-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
43 lines (38 loc) · 1.26 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
#importing required libraries
from flask import Flask, request, render_template
import numpy as np
import pandas as pd
from sklearn import metrics
import warnings
import pickle
from convert import convertion
warnings.filterwarnings('ignore')
from feature import FeatureExtraction
file = open("newmodel.pkl","rb")
gbc = pickle.load(file)
file.close()
app = Flask(__name__)
@app.route("/")
def home():
return render_template("index.html")
@app.route('/result',methods=['POST','GET'])
def predict():
if request.method == "POST":
url = request.form["name"]
obj = FeatureExtraction(url)
x = np.array(obj.getFeaturesList()).reshape(1,30)
y_pred =gbc.predict(x)[0]
#1 is safe
#-1 is unsafe
#y_pro_phishing = gbc.predict_proba(x)[0,0]
#y_pro_non_phishing = gbc.predict_proba(x)[0,1]
# if(y_pred ==1 ):
#3pred = "It is {0:.2f} % safe to go ".format(y_pro_phishing*100)
#xx =y_pred
name=convertion(url,int(y_pred))
return render_template("index.html", name=name)
@app.route('/usecases', methods=['GET', 'POST'])
def usecases():
return render_template('usecases.html')
if __name__ == "__main__":
app.run(debug=True)