-
Notifications
You must be signed in to change notification settings - Fork 94
/
predict.py
629 lines (541 loc) · 31.6 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
"""
If you use this code, please cite one of the SynthSeg papers:
https://github.com/BBillot/SynthSeg/blob/master/bibtex.bib
Copyright 2020 Benjamin Billot
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in
compliance with the License. You may obtain a copy of the License at
https://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is
distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied. See the License for the specific language governing permissions and limitations under the
License.
"""
# python imports
import os
import csv
import numpy as np
import tensorflow as tf
import keras.layers as KL
import keras.backend as K
from keras.models import Model
# project imports
from SynthSeg import evaluate
# third-party imports
from ext.lab2im import utils
from ext.lab2im import layers
from ext.lab2im import edit_volumes
from ext.neuron import models as nrn_models
def predict(path_images,
path_segmentations,
path_model,
labels_segmentation,
n_neutral_labels=None,
names_segmentation=None,
path_posteriors=None,
path_resampled=None,
path_volumes=None,
min_pad=None,
cropping=None,
target_res=1.,
gradients=False,
flip=True,
topology_classes=None,
sigma_smoothing=0.5,
keep_biggest_component=True,
n_levels=5,
nb_conv_per_level=2,
conv_size=3,
unet_feat_count=24,
feat_multiplier=2,
activation='elu',
gt_folder=None,
evaluation_labels=None,
list_incorrect_labels=None,
list_correct_labels=None,
compute_distances=False,
recompute=True,
verbose=True):
"""
This function uses trained models to segment images.
It is crucial that the inputs match the architecture parameters of the trained model.
:param path_images: path of the images to segment. Can be the path to a directory or the path to a single image.
:param path_segmentations: path where segmentations will be writen.
Should be a dir, if path_images is a dir, and a file if path_images is a file.
:param path_model: path ot the trained model.
:param labels_segmentation: List of labels for which to compute Dice scores. It should be the same list as the
segmentation_labels used in training.
:param n_neutral_labels: (optional) if the label maps contain some right/left specific labels and if test-time
flipping is applied (see parameter 'flip'), please provide the number of non-sided labels (including background).
It should be the same value as for training. Default is None.
:param names_segmentation: (optional) List of names corresponding to the names of the segmentation labels.
Only used when path_volumes is provided. Must be of the same size as segmentation_labels. Can be given as a
list, a numpy array of strings, or the path to such a numpy array. Default is None.
:param path_posteriors: (optional) path where posteriors will be writen.
Should be a dir, if path_images is a dir, and a file if path_images is a file.
:param path_resampled: (optional) path where images resampled to 1mm isotropic will be writen.
We emphasise that images are resampled as soon as the resolution in one of the axes is not in the range [0.9; 1.1].
Should be a dir, if path_images is a dir, and a file if path_images is a file. Default is None, where resampled
images are not saved.
:param path_volumes: (optional) path of a csv file where the soft volumes of all segmented regions will be writen.
The rows of the csv file correspond to subjects, and the columns correspond to segmentation labels.
The soft volume of a structure corresponds to the sum of its predicted probability map.
:param min_pad: (optional) minimum size of the images to process. Can be an int, a sequence or a 1d numpy array.
:param cropping: (optional) crop the images to the specified shape before predicting the segmentation maps.
Cropping overwrites min_pad if min_pad>cropping. Can be an int, a sequence or a 1d numpy array.
:param target_res: (optional) target resolution at which the network operates (and thus resolution of the output
segmentations). This must match the resolution of the training data ! target_res is used to automatically resampled
the images with resolutions outside [target_res-0.05, target_res+0.05].
:param gradients: (optional) whether to replace the image by the magnitude of its gradient as input to the network.
Can be a sequence, a 1d numpy array. Set to None to disable the automatic resampling. Default is 1mm.
:param flip: (optional) whether to perform test-time augmentation, where the input image is segmented along with
a right/left flipped version on it. If set to True (default), be careful because this requires more memory.
:param topology_classes: List of classes corresponding to all segmentation labels, in order to group them into
classes, for each of which we will operate a smooth version of biggest connected component.
Can be a sequence, a 1d numpy array, or the path to a numpy 1d array in the same order as segmentation_labels.
Default is None, where no topological analysis is performed.
:param sigma_smoothing: (optional) If not None, the posteriors are smoothed with a gaussian kernel of the specified
standard deviation.
:param keep_biggest_component: (optional) whether to only keep the biggest component in the predicted segmentation.
This is applied independently of topology_classes, and it is applied to the whole segmentation
:param n_levels: (optional) number of levels for unet. Default is 5.
:param nb_conv_per_level: (optional) number of convolution layers per level. Default is 2.
:param conv_size: (optional) size of UNet's convolution masks. Default is 3.
:param unet_feat_count: (optional) number of features for the first layer of the unet. Default is 24.
:param feat_multiplier: (optional) multiplicative factor for the number of feature for each new level. Default is 2.
:param activation: (optional) activation function. Can be 'elu', 'relu'.
:param gt_folder: (optional) path of the ground truth label maps corresponding to the input images. Should be a dir,
if path_images is a dir, or a file if path_images is a file.
Providing a gt_folder will trigger a Dice evaluation, where scores will be writen along with the path_segmentations.
Specifically, the scores are contained in a numpy array, where labels are in rows, and subjects in columns.
:param evaluation_labels: (optional) if gt_folder is True you can evaluate the Dice scores on a subset of the
segmentation labels, by providing another label list here. Can be a sequence, a 1d numpy array, or the path to a
numpy 1d array. Default is np.unique(segmentation_labels).
:param list_incorrect_labels: (optional) this option enables to replace some label values in the obtained
segmentations by other label values. Can be a list, a 1d numpy array, or the path to such an array.
:param list_correct_labels: (optional) list of values to correct the labels specified in list_incorrect_labels.
Correct values must have the same order as their corresponding value in list_incorrect_labels.
:param compute_distances: (optional) whether to add Hausdorff and mean surface distance evaluations to the default
Dice evaluation. Default is True.
:param recompute: (optional) whether to recompute segmentations that were already computed. This also applies to
Dice scores, if gt_folder is not None. Default is True.
:param verbose: (optional) whether to print out info about the remaining number of cases.
"""
# prepare input/output filepaths
path_images, path_segmentations, path_posteriors, path_resampled, path_volumes, compute, unique_vol_file = \
prepare_output_files(path_images, path_segmentations, path_posteriors, path_resampled, path_volumes, recompute)
# get label list
labels_segmentation, _ = utils.get_list_labels(label_list=labels_segmentation)
if (n_neutral_labels is not None) & flip:
labels_segmentation, flip_indices, unique_idx = get_flip_indices(labels_segmentation, n_neutral_labels)
else:
labels_segmentation, unique_idx = np.unique(labels_segmentation, return_index=True)
flip_indices = None
# prepare other labels list
if names_segmentation is not None:
names_segmentation = utils.load_array_if_path(names_segmentation)[unique_idx]
if topology_classes is not None:
topology_classes = utils.load_array_if_path(topology_classes, load_as_numpy=True)[unique_idx]
# prepare volumes if necessary
if unique_vol_file & (path_volumes[0] is not None):
write_csv(path_volumes[0], None, True, labels_segmentation, names_segmentation)
# build network
_, _, n_dims, n_channels, _, _ = utils.get_volume_info(path_images[0])
model_input_shape = [None] * n_dims + [n_channels]
net = build_model(path_model=path_model,
input_shape=model_input_shape,
labels_segmentation=labels_segmentation,
n_levels=n_levels,
nb_conv_per_level=nb_conv_per_level,
conv_size=conv_size,
unet_feat_count=unet_feat_count,
feat_multiplier=feat_multiplier,
activation=activation,
sigma_smoothing=sigma_smoothing,
flip_indices=flip_indices,
gradients=gradients)
# set cropping/padding
if (cropping is not None) & (min_pad is not None):
cropping = utils.reformat_to_list(cropping, length=n_dims, dtype='int')
min_pad = utils.reformat_to_list(min_pad, length=n_dims, dtype='int')
min_pad = np.minimum(cropping, min_pad)
# perform segmentation
if len(path_images) <= 10:
loop_info = utils.LoopInfo(len(path_images), 1, 'predicting', True)
else:
loop_info = utils.LoopInfo(len(path_images), 10, 'predicting', True)
for i in range(len(path_images)):
if verbose:
loop_info.update(i)
# compute segmentation only if needed
if compute[i]:
# preprocessing
image, aff, h, im_res, shape, pad_idx, crop_idx = preprocess(path_image=path_images[i],
n_levels=n_levels,
target_res=target_res,
crop=cropping,
min_pad=min_pad,
path_resample=path_resampled[i])
# prediction
post_patch = net.predict(image)
# postprocessing
seg, posteriors, volumes = postprocess(post_patch=post_patch,
shape=shape,
pad_idx=pad_idx,
crop_idx=crop_idx,
n_dims=n_dims,
labels_segmentation=labels_segmentation,
keep_biggest_component=keep_biggest_component,
aff=aff,
im_res=im_res,
topology_classes=topology_classes)
# write results to disk
utils.save_volume(seg, aff, h, path_segmentations[i], dtype='int32')
if path_posteriors[i] is not None:
if n_channels > 1:
posteriors = utils.add_axis(posteriors, axis=[0, -1])
utils.save_volume(posteriors, aff, h, path_posteriors[i], dtype='float32')
# compute volumes
if path_volumes[i] is not None:
row = [os.path.basename(path_images[i]).replace('.nii.gz', '')] + [str(vol) for vol in volumes]
write_csv(path_volumes[i], row, unique_vol_file, labels_segmentation, names_segmentation)
# evaluate
if gt_folder is not None:
# find path where segmentations are saved evaluation folder, and get labels on which to evaluate
eval_folder = os.path.dirname(path_segmentations[0])
if evaluation_labels is None:
evaluation_labels = labels_segmentation
# set path of result arrays for surface distance if necessary
if compute_distances:
path_hausdorff = os.path.join(eval_folder, 'hausdorff.npy')
path_hausdorff_99 = os.path.join(eval_folder, 'hausdorff_99.npy')
path_hausdorff_95 = os.path.join(eval_folder, 'hausdorff_95.npy')
path_mean_distance = os.path.join(eval_folder, 'mean_distance.npy')
else:
path_hausdorff = path_hausdorff_99 = path_hausdorff_95 = path_mean_distance = None
# compute evaluation metrics
evaluate.evaluation(gt_folder,
eval_folder,
evaluation_labels,
path_dice=os.path.join(eval_folder, 'dice.npy'),
path_hausdorff=path_hausdorff,
path_hausdorff_99=path_hausdorff_99,
path_hausdorff_95=path_hausdorff_95,
path_mean_distance=path_mean_distance,
list_incorrect_labels=list_incorrect_labels,
list_correct_labels=list_correct_labels,
recompute=recompute,
verbose=verbose)
def prepare_output_files(path_images, out_seg, out_posteriors, out_resampled, out_volumes, recompute):
# check inputs
assert path_images is not None, 'please specify an input file/folder (--i)'
assert out_seg is not None, 'please specify an output file/folder (--o)'
# convert path to absolute paths
path_images = os.path.abspath(path_images)
basename = os.path.basename(path_images)
out_seg = os.path.abspath(out_seg)
out_posteriors = os.path.abspath(out_posteriors) if (out_posteriors is not None) else out_posteriors
out_resampled = os.path.abspath(out_resampled) if (out_resampled is not None) else out_resampled
out_volumes = os.path.abspath(out_volumes) if (out_volumes is not None) else out_volumes
# path_images is a text file
if basename[-4:] == '.txt':
# input images
if not os.path.isfile(path_images):
raise Exception('provided text file containing paths of input images does not exist' % path_images)
with open(path_images, 'r') as f:
path_images = [line.replace('\n', '') for line in f.readlines() if line != '\n']
# define helper to deal with outputs
def text_helper(path, name):
if path is not None:
assert path[-4:] == '.txt', 'if path_images given as text file, so must be %s' % name
with open(path, 'r') as ff:
path = [line.replace('\n', '') for line in ff.readlines() if line != '\n']
recompute_files = [not os.path.isfile(p) for p in path]
else:
path = [None] * len(path_images)
recompute_files = [False] * len(path_images)
unique_file = False
return path, recompute_files, unique_file
# use helper on all outputs
out_seg, recompute_seg, _ = text_helper(out_seg, 'path_segmentations')
out_posteriors, recompute_post, _ = text_helper(out_posteriors, 'path_posteriors')
out_resampled, recompute_resampled, _ = text_helper(out_resampled, 'path_resampled')
out_volumes, recompute_volume, unique_volume_file = text_helper(out_volumes, 'path_volume')
# path_images is a folder
elif ('.nii.gz' not in basename) & ('.nii' not in basename) & ('.mgz' not in basename) & ('.npz' not in basename):
# input images
if os.path.isfile(path_images):
raise Exception('Extension not supported for %s, only use: nii.gz, .nii, .mgz, or .npz' % path_images)
path_images = utils.list_images_in_folder(path_images)
# define helper to deal with outputs
def helper_dir(path, name, file_type, suffix):
unique_file = False
if path is not None:
assert path[-4:] != '.txt', '%s can only be given as text file when path_images is.' % name
if file_type == 'csv':
if path[-4:] != '.csv':
print('%s provided without csv extension. Adding csv extension.' % name)
path += '.csv'
path = [path] * len(path_images)
recompute_files = [True] * len(path_images)
unique_file = True
else:
if (path[-7:] == '.nii.gz') | (path[-4:] == '.nii') | (path[-4:] == '.mgz') | (path[-4:] == '.npz'):
raise Exception('Output FOLDER had a FILE extension' % path)
path = [os.path.join(path, os.path.basename(p)) for p in path_images]
path = [p.replace('.nii', '_%s.nii' % suffix) for p in path]
path = [p.replace('.mgz', '_%s.mgz' % suffix) for p in path]
path = [p.replace('.npz', '_%s.npz' % suffix) for p in path]
recompute_files = [not os.path.isfile(p) for p in path]
utils.mkdir(os.path.dirname(path[0]))
else:
path = [None] * len(path_images)
recompute_files = [False] * len(path_images)
return path, recompute_files, unique_file
# use helper on all outputs
out_seg, recompute_seg, _ = helper_dir(out_seg, 'path_segmentations', '', 'synthseg')
out_posteriors, recompute_post, _ = helper_dir(out_posteriors, 'path_posteriors', '', 'posteriors')
out_resampled, recompute_resampled, _ = helper_dir(out_resampled, 'path_resampled', '', 'resampled')
out_volumes, recompute_volume, unique_volume_file = helper_dir(out_volumes, 'path_volumes', 'csv', '')
# path_images is an image
else:
# input image
assert os.path.isfile(path_images), 'file does not exist: %s \n' \
'please make sure the path and the extension are correct' % path_images
path_images = [path_images]
# define helper to deal with outputs
def helper_im(path, name, file_type, suffix):
unique_file = False
if path is not None:
assert path[-4:] != '.txt', '%s can only be given as text file when path_images is.' % name
if file_type == 'csv':
if path[-4:] != '.csv':
print('%s provided without csv extension. Adding csv extension.' % name)
path += '.csv'
recompute_files = [True]
unique_file = True
else:
if ('.nii.gz' not in path) & ('.nii' not in path) & ('.mgz' not in path) & ('.npz' not in path):
file_name = os.path.basename(path_images[0]).replace('.nii', '_%s.nii' % suffix)
file_name = file_name.replace('.mgz', '_%s.mgz' % suffix)
file_name = file_name.replace('.npz', '_%s.npz' % suffix)
path = os.path.join(path, file_name)
recompute_files = [not os.path.isfile(path)]
utils.mkdir(os.path.dirname(path))
else:
recompute_files = [False]
path = [path]
return path, recompute_files, unique_file
# use helper on all outputs
out_seg, recompute_seg, _ = helper_im(out_seg, 'path_segmentations', '', 'synthseg')
out_posteriors, recompute_post, _ = helper_im(out_posteriors, 'path_posteriors', '', 'posteriors')
out_resampled, recompute_resampled, _ = helper_im(out_resampled, 'path_resampled', '', 'resampled')
out_volumes, recompute_volume, unique_volume_file = helper_im(out_volumes, 'path_volumes', 'csv', '')
recompute_list = [recompute | re_seg | re_post | re_res | re_vol for (re_seg, re_post, re_res, re_vol)
in zip(recompute_seg, recompute_post, recompute_resampled, recompute_volume)]
return path_images, out_seg, out_posteriors, out_resampled, out_volumes, recompute_list, unique_volume_file
def preprocess(path_image, n_levels, target_res, crop=None, min_pad=None, path_resample=None):
# read image and corresponding info
im, _, aff, n_dims, n_channels, h, im_res = utils.get_volume_info(path_image, True)
# resample image if necessary
if target_res is not None:
target_res = np.squeeze(utils.reformat_to_n_channels_array(target_res, n_dims))
if np.any((im_res > target_res + 0.05) | (im_res < target_res - 0.05)):
im_res = target_res
im, aff = edit_volumes.resample_volume(im, aff, im_res)
if path_resample is not None:
utils.save_volume(im, aff, h, path_resample)
# align image
im = edit_volumes.align_volume_to_ref(im, aff, aff_ref=np.eye(4), n_dims=n_dims, return_copy=False)
shape = list(im.shape[:n_dims])
# crop image if necessary
if crop is not None:
crop = utils.reformat_to_list(crop, length=n_dims, dtype='int')
crop_shape = [utils.find_closest_number_divisible_by_m(s, 2 ** n_levels, 'higher') for s in crop]
im, crop_idx = edit_volumes.crop_volume(im, cropping_shape=crop_shape, return_crop_idx=True)
else:
crop_idx = None
# normalise image
if n_channels == 1:
im = edit_volumes.rescale_volume(im, new_min=0., new_max=1., min_percentile=0.5, max_percentile=99.5)
else:
for i in range(im.shape[-1]):
im[..., i] = edit_volumes.rescale_volume(im[..., i], new_min=0., new_max=1.,
min_percentile=0.5, max_percentile=99.5)
# pad image
input_shape = im.shape[:n_dims]
pad_shape = [utils.find_closest_number_divisible_by_m(s, 2 ** n_levels, 'higher') for s in input_shape]
if min_pad is not None: # in SynthSeg predict use crop flag and then if used do min_pad=crop else min_pad = 192
min_pad = utils.reformat_to_list(min_pad, length=n_dims, dtype='int')
min_pad = [utils.find_closest_number_divisible_by_m(s, 2 ** n_levels, 'higher') for s in min_pad]
pad_shape = np.maximum(pad_shape, min_pad)
im, pad_idx = edit_volumes.pad_volume(im, padding_shape=pad_shape, return_pad_idx=True)
# add batch and channel axes
im = utils.add_axis(im) if n_channels > 1 else utils.add_axis(im, axis=[0, -1])
return im, aff, h, im_res, shape, pad_idx, crop_idx
def build_model(path_model,
input_shape,
labels_segmentation,
n_levels,
nb_conv_per_level,
conv_size,
unet_feat_count,
feat_multiplier,
activation,
sigma_smoothing,
flip_indices,
gradients):
assert os.path.isfile(path_model), "The provided model path does not exist."
# get labels
n_labels_seg = len(labels_segmentation)
if gradients:
input_image = KL.Input(input_shape)
last_tensor = layers.ImageGradients('sobel', True)(input_image)
last_tensor = KL.Lambda(lambda x: (x - K.min(x)) / (K.max(x) - K.min(x) + K.epsilon()))(last_tensor)
net = Model(inputs=input_image, outputs=last_tensor)
else:
net = None
# build UNet
net = nrn_models.unet(input_model=net,
input_shape=input_shape,
nb_labels=n_labels_seg,
nb_levels=n_levels,
nb_conv_per_level=nb_conv_per_level,
conv_size=conv_size,
nb_features=unet_feat_count,
feat_mult=feat_multiplier,
activation=activation,
batch_norm=-1)
net.load_weights(path_model, by_name=True)
# smooth posteriors if specified
if sigma_smoothing > 0:
last_tensor = net.output
last_tensor._keras_shape = tuple(last_tensor.get_shape().as_list())
last_tensor = layers.GaussianBlur(sigma=sigma_smoothing)(last_tensor)
net = Model(inputs=net.inputs, outputs=last_tensor)
if flip_indices is not None:
# segment flipped image
input_image = net.inputs[0]
seg = net.output
image_flipped = layers.RandomFlip(axis=0, prob=1)(input_image)
last_tensor = net(image_flipped)
# flip back and re-order channels
last_tensor = layers.RandomFlip(axis=0, prob=1)(last_tensor)
last_tensor = KL.Lambda(lambda x: tf.split(x, [1] * n_labels_seg, axis=-1), name='split')(last_tensor)
reordered_channels = [last_tensor[flip_indices[i]] for i in range(n_labels_seg)]
last_tensor = KL.Lambda(lambda x: tf.concat(x, -1), name='concat')(reordered_channels)
# average two segmentations and build model
name_segm_prediction_layer = 'average_lr'
last_tensor = KL.Lambda(lambda x: 0.5 * (x[0] + x[1]), name=name_segm_prediction_layer)([seg, last_tensor])
net = Model(inputs=net.inputs, outputs=last_tensor)
return net
def postprocess(post_patch, shape, pad_idx, crop_idx, n_dims,
labels_segmentation, keep_biggest_component, aff, im_res, topology_classes=None):
# get posteriors
post_patch = np.squeeze(post_patch)
if topology_classes is None:
post_patch = edit_volumes.crop_volume_with_idx(post_patch, pad_idx, n_dims=3, return_copy=False)
# keep biggest connected component
if keep_biggest_component:
tmp_post_patch = post_patch[..., 1:]
post_patch_mask = np.sum(tmp_post_patch, axis=-1) > 0.25
post_patch_mask = edit_volumes.get_largest_connected_component(post_patch_mask)
post_patch_mask = np.stack([post_patch_mask]*tmp_post_patch.shape[-1], axis=-1)
tmp_post_patch = edit_volumes.mask_volume(tmp_post_patch, mask=post_patch_mask, return_copy=False)
post_patch[..., 1:] = tmp_post_patch
# reset posteriors to zero outside the largest connected component of each topological class
if topology_classes is not None:
post_patch_mask = post_patch > 0.25
for topology_class in np.unique(topology_classes)[1:]:
tmp_topology_indices = np.where(topology_classes == topology_class)[0]
tmp_mask = np.any(post_patch_mask[..., tmp_topology_indices], axis=-1)
tmp_mask = edit_volumes.get_largest_connected_component(tmp_mask)
for idx in tmp_topology_indices:
post_patch[..., idx] *= tmp_mask
post_patch = edit_volumes.crop_volume_with_idx(post_patch, pad_idx, n_dims=3, return_copy=False)
# normalise posteriors and get hard segmentation
if keep_biggest_component | (topology_classes is not None):
post_patch /= np.sum(post_patch, axis=-1)[..., np.newaxis]
seg_patch = labels_segmentation[post_patch.argmax(-1).astype('int32')].astype('int32')
# paste patches back to matrix of original image size
if crop_idx is not None:
# we need to go through this because of the posteriors of the background, otherwise pad_volume would work
seg = np.zeros(shape=shape, dtype='int32')
posteriors = np.zeros(shape=[*shape, labels_segmentation.shape[0]])
posteriors[..., 0] = np.ones(shape) # place background around patch
if n_dims == 2:
seg[crop_idx[0]:crop_idx[2], crop_idx[1]:crop_idx[3]] = seg_patch
posteriors[crop_idx[0]:crop_idx[2], crop_idx[1]:crop_idx[3], :] = post_patch
elif n_dims == 3:
seg[crop_idx[0]:crop_idx[3], crop_idx[1]:crop_idx[4], crop_idx[2]:crop_idx[5]] = seg_patch
posteriors[crop_idx[0]:crop_idx[3], crop_idx[1]:crop_idx[4], crop_idx[2]:crop_idx[5], :] = post_patch
else:
seg = seg_patch
posteriors = post_patch
# align prediction back to first orientation
seg = edit_volumes.align_volume_to_ref(seg, aff=np.eye(4), aff_ref=aff, n_dims=n_dims, return_copy=False)
posteriors = edit_volumes.align_volume_to_ref(posteriors, np.eye(4), aff_ref=aff, n_dims=n_dims, return_copy=False)
# compute volumes
volumes = np.sum(posteriors[..., 1:], axis=tuple(range(0, len(posteriors.shape) - 1)))
volumes = np.around(volumes * np.prod(im_res), 3)
return seg, posteriors, volumes
def get_flip_indices(labels_segmentation, n_neutral_labels):
# get position labels
n_sided_labels = int((len(labels_segmentation) - n_neutral_labels) / 2)
neutral_labels = labels_segmentation[:n_neutral_labels]
left = labels_segmentation[n_neutral_labels:n_neutral_labels + n_sided_labels]
# get correspondence between labels
lr_corresp = np.stack([labels_segmentation[n_neutral_labels:n_neutral_labels + n_sided_labels],
labels_segmentation[n_neutral_labels + n_sided_labels:]])
lr_corresp_unique, lr_corresp_indices = np.unique(lr_corresp[0, :], return_index=True)
lr_corresp_unique = np.stack([lr_corresp_unique, lr_corresp[1, lr_corresp_indices]])
lr_corresp_unique = lr_corresp_unique[:, 1:] if not np.all(lr_corresp_unique[:, 0]) else lr_corresp_unique
# get unique labels
labels_segmentation, unique_idx = np.unique(labels_segmentation, return_index=True)
# get indices of corresponding labels
lr_indices = np.zeros_like(lr_corresp_unique)
for i in range(lr_corresp_unique.shape[0]):
for j, lab in enumerate(lr_corresp_unique[i]):
lr_indices[i, j] = np.where(labels_segmentation == lab)[0]
# build 1d vector to swap LR corresponding labels taking into account neutral labels
flip_indices = np.zeros_like(labels_segmentation)
for i in range(len(flip_indices)):
if labels_segmentation[i] in neutral_labels:
flip_indices[i] = i
elif labels_segmentation[i] in left:
flip_indices[i] = lr_indices[1, np.where(lr_corresp_unique[0, :] == labels_segmentation[i])]
else:
flip_indices[i] = lr_indices[0, np.where(lr_corresp_unique[1, :] == labels_segmentation[i])]
return labels_segmentation, flip_indices, unique_idx
def write_csv(path_csv, data, unique_file, labels, names, skip_first=True, last_first=False):
# initialisation
utils.mkdir(os.path.dirname(path_csv))
labels, unique_idx = np.unique(labels, return_index=True)
if skip_first:
labels = labels[1:]
if names is not None:
names = names[unique_idx].tolist()
if skip_first:
names = names[1:]
header = names
else:
header = [str(lab) for lab in labels]
if last_first:
header = [header[-1]] + header[:-1]
if (not unique_file) & (data is None):
raise ValueError('data can only be None when initialising a unique volume file')
# modify data
if unique_file:
if data is None:
type_open = 'w'
data = ['subject'] + header
else:
type_open = 'a'
data = [data]
else:
type_open = 'w'
header = [''] + header
data = [header, data]
# write csv
with open(path_csv, type_open) as csvFile:
writer = csv.writer(csvFile)
writer.writerows(data)