-
Notifications
You must be signed in to change notification settings - Fork 0
/
evaluation.py
416 lines (371 loc) · 16.9 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
import sys
import io, os
import numpy as np
import logging
import argparse
from prettytable import PrettyTable
import torch
import torch.nn.functional as F
import transformers
from transformers import AutoModel, AutoTokenizer
from torch.utils.data import DataLoader, Dataset, TensorDataset
# Set up logger
logging.basicConfig(format='%(asctime)s : %(message)s', level=logging.DEBUG)
# Set PATHs
PATH_TO_SENTEVAL = '/home/LAB/niezj/unsupervised/SentEval'
PATH_TO_DATA = '/home/LAB/niezj/unsupervised/SentEval/data'
# Import SentEval
sys.path.insert(0, PATH_TO_SENTEVAL)
import senteval
def print_table(task_names, scores):
tb = PrettyTable()
tb.field_names = task_names
tb.add_row(scores)
print(tb)
def Construct_Eval_Distribution_Dataset(datapath, tokenizer):
datas = []
with open(datapath) as f:
lines = f.readlines()
for line in lines:
line = line.strip().split('\t')
datas.append((line[5], line[6]))
text_a = [ele[0] for ele in datas]
text_b = [ele[1] for ele in datas]
text = text_a + text_b
text = tokenizer(text, padding=True, truncation=True, return_tensors="pt")
tensors = list(text.values())
return TensorDataset(*tensors)
def Construct_Eval_Test_Dataset(datapath, tokenizer):
datas = []
with open(datapath) as f:
lines = f.readlines()
for line in lines:
line = line.strip().split('\t')
datas.append((line[5], line[6], float(line[4])))
text_a = [ele[0] for ele in datas]
text_b = [ele[1] for ele in datas]
labels = [ele[2] for ele in datas]
texta = tokenizer(text_a, padding=True, truncation=True, return_tensors='pt')
textb = tokenizer(text_b, padding=True, truncation=True, return_tensors='pt')
labels = torch.LongTensor(labels)
tensors = list(texta.values()) + list(textb.values()) + [labels]
return TensorDataset(*tensors)
def pooling(outputs, attention_mask, args=None, to_cpu=False):
last_hidden = outputs.last_hidden_state
pooler_output = outputs.pooler_output
hidden_states = outputs.hidden_states
if args is None:
return_tensor = last_hidden[:, 0]
if to_cpu:
return return_tensor.cpu()
else:
return return_tensor
# Apply different poolers
if args.pooler == 'cls':
# There is a linear+activation layer after CLS representation
return_tensor = pooler_output
elif args.pooler == 'cls_before_pooler':
return_tensor = last_hidden[:, 0]
elif args.pooler == "avg":
return_tensor = ((last_hidden * attention_mask.unsqueeze(-1)).sum(1) / attention_mask.sum(-1).unsqueeze(-1))
elif args.pooler == "avg_first_last":
first_hidden = hidden_states[0]
last_hidden = hidden_states[-1]
pooled_result = ((first_hidden + last_hidden) / 2.0 * attention_mask.unsqueeze(-1)).sum(1) / attention_mask.sum(
-1).unsqueeze(-1)
return_tensor = pooled_result
elif args.pooler == "avg_top2":
second_last_hidden = hidden_states[-2]
last_hidden = hidden_states[-1]
pooled_result = ((last_hidden + second_last_hidden) / 2.0 * attention_mask.unsqueeze(-1)).sum(
1) / attention_mask.sum(-1).unsqueeze(-1)
return_tensor = pooled_result
else:
raise NotImplementedError
if to_cpu:
return return_tensor.cpu()
else:
return return_tensor
def compute_kernel_bias(vecs, n_components=256):
# 计算kernel和bias 最后的变换:y = (x + bias).dot(kernel)
mu = vecs.mean(axis=0, keepdims=True)
cov = np.cov(vecs.T)
u, s, vh = np.linalg.svd(cov)
W = np.dot(u, np.diag(s ** 0.5))
W = np.linalg.inv(W.T)
W = W[:, :n_components]
return W, -mu
def cal_angle(model, dataloader, args=None):
results = None
labels = []
for batch in dataloader:
with torch.no_grad():
batch = [ele.to(model.device) for ele in batch]
if len(batch) == 5:
outputs = model(input_ids=batch[0], attention_mask=batch[1], output_hidden_states=True,
return_dict=True)
emba = pooling(outputs, batch[1], args, to_cpu=True)
outputs = model(input_ids=batch[2], attention_mask=batch[3], output_hidden_states=True,
return_dict=True)
embb = pooling(outputs, batch[3], args, to_cpu=True)
label = batch[4].detach().cpu().numpy().tolist()
else:
outputs = model(input_ids=batch[0], token_type_ids=batch[1], attention_mask=batch[2],
output_hidden_states=True, return_dict=True)
emba = pooling(outputs, batch[2], args, to_cpu=True)
outputs = model(input_ids=batch[3], token_type_ids=batch[4], attention_mask=batch[5],
output_hidden_states=True, return_dict=True)
embb = pooling(outputs, batch[5], args, to_cpu=True)
label = batch[6].detach().cpu().numpy().tolist()
emba = F.normalize(emba, dim=-1)
embb = F.normalize(embb, dim=-1)
cos_sim = torch.mm(emba, embb.permute(1, 0))
if results is None:
results = cos_sim
labels += label
elif cos_sim.shape[1] != 64:
continue
else:
results = torch.cat((results, cos_sim), dim=0)
labels += label
p_a_list = []
n_a_list = []
for i, label in enumerate(labels):
if label > 3.5:
positive_angle = torch.arccos(results[i][i % 64] - 1e-5)
negative_sum_angle = torch.arccos(results[i][:i % 64] - 1e-5).sum() + torch.arccos(
results[i][i % 64 + 1:] - 1e-5).sum()
print(results[i][:i % 64].shape[0] + results[i][i % 64 + 1:].shape[0])
negative_avg_angle = negative_sum_angle / (results.shape[1] - 1)
p_a_list.append(positive_angle.item())
n_a_list.append(negative_avg_angle.item())
# print(p_a_list)
metrics = {'positive angle': (sum(p_a_list) / len(p_a_list)) / np.pi * 180,
'negative angle': (sum(n_a_list) / len(n_a_list)) / np.pi * 180}
return metrics
def cal_align_uniform(model, dataloader, args=None):
results = []
labels = []
embs = []
for batch in dataloader:
with torch.no_grad():
batch = [ele.to(model.device) for ele in batch]
if len(batch) == 5:
outputs = model(input_ids=batch[0], attention_mask=batch[1], output_hidden_states=True,
return_dict=True)
emba = pooling(outputs, batch[1], args, to_cpu=True)
# emba = outputs.pooler_output
outputs = model(input_ids=batch[2], attention_mask=batch[3], output_hidden_states=True,
return_dict=True)
embb = pooling(outputs, batch[3], args, to_cpu=True)
label = batch[4].detach().cpu().numpy().tolist()
else:
outputs = model(input_ids=batch[0], token_type_ids=batch[1], attention_mask=batch[2],
output_hidden_states=True, return_dict=True)
emba = pooling(outputs, batch[2], args, to_cpu=True)
outputs = model(input_ids=batch[3], token_type_ids=batch[4], attention_mask=batch[5],
output_hidden_states=True, return_dict=True)
embb = pooling(outputs, batch[5], args, to_cpu=True)
label = batch[6].detach().cpu().numpy().tolist()
emba = F.normalize(emba, dim=-1)
embb = F.normalize(embb, dim=-1)
scores = torch.linalg.norm(emba - embb, dim=-1).pow(2)
embs.append(emba)
embs.append(embb)
labels += label
scores = scores.detach().cpu().numpy().tolist()
results += scores
align = []
embs = torch.cat(embs, dim=0)
for score, label in zip(results, labels):
if label > 4.0:
align.append(score)
align = sum(align) / len(align)
metrics = {'alignment': align, 'uniformity': F.pdist(embs).pow(2).mul(-2).exp().mean().log().item()}
return metrics
def record_distribution(model, dataloader, args=None):
sim_list = []
for index, batch in enumerate(dataloader):
with torch.no_grad():
batch = [ele.to(model.device) for ele in batch]
outputs = model(input_ids=batch[0], token_type_ids=batch[1], attention_mask=batch[2],
output_hidden_states=True, return_dict=True)
embs = pooling(outputs, batch[2], args)
embs = F.normalize(embs, dim=-1)
if index == 0:
anchor = embs[0].unsqueeze(0)
sim = torch.mm(embs[1:], anchor.permute(1, 0))
sim = sim.detach().cpu().numpy().tolist()
print(sim[0])
break
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--model_name_or_path", type=str,
help="Transformers' model name or path")
parser.add_argument("--pooler", type=str,
choices=['cls', 'cls_before_pooler', 'avg', 'avg_top2', 'avg_first_last'],
default='cls',
help="Which pooler to use")
parser.add_argument("--mode", type=str,
choices=['dev', 'test', 'fasttest'],
default='test',
help="What evaluation mode to use (dev: fast mode, dev results; test: full mode, test results); fasttest: fast mode, test results")
parser.add_argument("--task_set", type=str,
choices=['sts', 'transfer', 'full', 'na'],
default='sts',
help="What set of tasks to evaluate on. If not 'na', this will override '--tasks'")
parser.add_argument("--tasks", type=str, nargs='+',
default=['STS12', 'STS13', 'STS14', 'STS15', 'STS16',
'MR', 'CR', 'MPQA', 'SUBJ', 'SST2', 'TREC', 'MRPC',
'SICKRelatedness', 'STSBenchmark'],
help="Tasks to evaluate on. If '--task_set' is specified, this will be overridden")
parser.add_argument("--eval_path", default="data/sts-train.tsv", help="eval path")
parser.add_argument("--angle_cal", type=bool, default=False)
args = parser.parse_args()
# Load transformers' model checkpoint
model = AutoModel.from_pretrained(args.model_name_or_path)
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = model.to(device)
eval_dataset = Construct_Eval_Test_Dataset(args.eval_path, tokenizer)
eval_dataloader = DataLoader(eval_dataset, shuffle=False, batch_size=64)
scores = cal_align_uniform(model, eval_dataloader, args)
print("alignment & uniformity:", scores)
if args.angle_cal:
scores = cal_angle(model, eval_dataloader, args)
print(scores)
# Set up the tasks
if args.task_set == 'sts':
args.tasks = ['STS12', 'STS13', 'STS14', 'STS15', 'STS16', 'STSBenchmark', 'SICKRelatedness']
elif args.task_set == 'transfer':
args.tasks = ['MR', 'CR', 'MPQA', 'SUBJ', 'SST2', 'TREC', 'MRPC']
elif args.task_set == 'full':
args.tasks = ['STS12', 'STS13', 'STS14', 'STS15', 'STS16', 'STSBenchmark', 'SICKRelatedness']
args.tasks += ['MR', 'CR', 'MPQA', 'SUBJ', 'SST2', 'TREC', 'MRPC']
else:
return True
# Set params for SentEval
if args.mode == 'dev' or args.mode == 'fasttest':
# Fast mode
params = {'task_path': PATH_TO_DATA, 'usepytorch': True, 'kfold': 5}
params['classifier'] = {'nhid': 0, 'optim': 'rmsprop', 'batch_size': 128,
'tenacity': 3, 'epoch_size': 2}
elif args.mode == 'test':
# Full mode
params = {'task_path': PATH_TO_DATA, 'usepytorch': True, 'kfold': 10}
params['classifier'] = {'nhid': 0, 'optim': 'adam', 'batch_size': 64,
'tenacity': 5, 'epoch_size': 4}
else:
raise NotImplementedError
# SentEval prepare and batcher
def prepare(params, samples):
return
def batcher(params, batch, max_length=None):
# Handle rare token encoding issues in the dataset
if len(batch) >= 1 and len(batch[0]) >= 1 and isinstance(batch[0][0], bytes):
batch = [[word.decode('utf-8') for word in s] for s in batch]
sentences = [' '.join(s) for s in batch]
# Tokenization
if max_length is not None:
batch = tokenizer.batch_encode_plus(
sentences,
return_tensors='pt',
padding=True,
max_length=max_length,
truncation=True
)
else:
batch = tokenizer.batch_encode_plus(
sentences,
return_tensors='pt',
padding=True,
)
# Move to the correct device
for k in batch:
batch[k] = batch[k].to(device)
# Get raw embeddings
with torch.no_grad():
outputs = model(**batch, output_hidden_states=True, return_dict=True)
last_hidden = outputs.last_hidden_state
pooler_output = outputs.pooler_output
hidden_states = outputs.hidden_states
# Apply different poolers
if args.pooler == 'cls':
# There is a linear+activation layer after CLS representation
return pooler_output.cpu()
elif args.pooler == 'cls_before_pooler':
return last_hidden[:, 0].cpu()
elif args.pooler == "avg":
return ((last_hidden * batch['attention_mask'].unsqueeze(-1)).sum(1) / batch['attention_mask'].sum(
-1).unsqueeze(-1)).cpu()
elif args.pooler == "avg_first_last":
first_hidden = hidden_states[0]
last_hidden = hidden_states[-1]
pooled_result = ((first_hidden + last_hidden) / 2.0 * batch['attention_mask'].unsqueeze(-1)).sum(1) / batch[
'attention_mask'].sum(-1).unsqueeze(-1)
return pooled_result.cpu()
elif args.pooler == "avg_top2":
second_last_hidden = hidden_states[-2]
last_hidden = hidden_states[-1]
pooled_result = ((last_hidden + second_last_hidden) / 2.0 * batch['attention_mask'].unsqueeze(-1)).sum(1) / \
batch['attention_mask'].sum(-1).unsqueeze(-1)
return pooled_result.cpu()
else:
raise NotImplementedError
results = {}
for task in args.tasks:
se = senteval.engine.SE(params, batcher, prepare)
result = se.eval(task)
results[task] = result
# Print evaluation results
if args.mode == 'dev':
print("------ %s ------" % (args.mode))
task_names = []
scores = []
for task in ['STSBenchmark', 'SICKRelatedness']:
task_names.append(task)
if task in results:
scores.append("%.2f" % (results[task]['dev']['spearman'][0] * 100))
else:
scores.append("0.00")
print_table(task_names, scores)
task_names = []
scores = []
for task in ['MR', 'CR', 'SUBJ', 'MPQA', 'SST2', 'TREC', 'MRPC']:
task_names.append(task)
if task in results:
scores.append("%.2f" % (results[task]['devacc']))
else:
scores.append("0.00")
task_names.append("Avg.")
scores.append("%.2f" % (sum([float(score) for score in scores]) / len(scores)))
print_table(task_names, scores)
elif args.mode == 'test' or args.mode == 'fasttest':
print("------ %s ------" % (args.mode))
task_names = []
scores = []
for task in ['STS12', 'STS13', 'STS14', 'STS15', 'STS16', 'STSBenchmark', 'SICKRelatedness']:
task_names.append(task)
if task in results:
if task in ['STS12', 'STS13', 'STS14', 'STS15', 'STS16']:
scores.append("%.2f" % (results[task]['all']['spearman']['all'] * 100))
else:
scores.append("%.2f" % (results[task]['test']['spearman'].correlation * 100))
else:
scores.append("0.00")
task_names.append("Avg.")
scores.append("%.2f" % (sum([float(score) for score in scores]) / len(scores)))
print_table(task_names, scores)
task_names = []
scores = []
for task in ['MR', 'CR', 'SUBJ', 'MPQA', 'SST2', 'TREC', 'MRPC']:
task_names.append(task)
if task in results:
scores.append("%.2f" % (results[task]['devacc']))
else:
scores.append("0.00")
task_names.append("Avg.")
scores.append("%.2f" % (sum([float(score) for score in scores]) / len(scores)))
print_table(task_names, scores)
if __name__ == "__main__":
main()