-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathSuperpixels.cpp
423 lines (343 loc) · 14.3 KB
/
Superpixels.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
#include "Superpixels.h"
#define THREADS_PER_BLOCK 128
#include "utils.h"
//#include <ppl.h>
//#include <thrust/system_error.h>
//#include <thrust/system/cuda/error.h>
#include <iostream>
#include <fstream>
using namespace std;
//using namespace concurrency;
void throw_on_cuda_error(cudaError_t code)
{
if(code != cudaSuccess){
throw thrust::system_error(code, thrust::cuda_category());
}
}
// constructor
// init the superpixels with dim_x, dim_y, dim_i and options
Superpixels::Superpixels(int img_dimx, int img_dimy, superpixel_options spoptions){
init_sp = false;
dim_x = img_dimx;
dim_y = img_dimy;
nPixels = dim_x * dim_y;
dim_i = 3; // RGB/BGR/LAB
dim_s = 2;
sp_options = spoptions;
float i_std = float(sp_options.i_std);
float half_i_std_square = float(i_std/2) * float(i_std/2);
float i_std_square = float(i_std) * float(i_std);
logdet_Sigma_i = log(half_i_std_square * i_std_square * i_std_square);
logdet_Sigma_i = log(half_i_std_square * half_i_std_square * half_i_std_square);
J_i.x = 1.0/half_i_std_square;
J_i.y = 1.0/i_std_square;
J_i.z = 1.0/i_std_square;
J_i.y = 1.0/half_i_std_square;
J_i.z = 1.0/half_i_std_square;
//allocate memory for the cpu variables: image_cpu, seg_cpu and border_cpu
const int sizeofint = sizeof(int);
const int sizeofbool = sizeof(bool);
const int sizeofuchar = sizeof(unsigned char);
const int sizeofd = sizeof(double);
const int sizeofuchar3 = sizeof(uchar3);
image_cpu = (float*) malloc(dim_i*nPixels*sizeofuchar);
seg_cpu = (int*) malloc(nPixels*sizeofint);
border_cpu = (bool*) malloc(nPixels * sizeofbool);
// allocate memory for the cuda variables
try{
throw_on_cuda_error( cudaMalloc((void**) &image_gpu, nPixels*sizeofuchar3));
throw_on_cuda_error( cudaMalloc((void**) &image_gpu_double, dim_i*nPixels*sizeofd));
throw_on_cuda_error( cudaMalloc((void**) &seg_gpu, nPixels * sizeofint));
throw_on_cuda_error( cudaMalloc((void**) &seg_split1, nPixels * sizeofint));
throw_on_cuda_error( cudaMalloc((void**) &seg_split2, nPixels * sizeofint));
throw_on_cuda_error( cudaMalloc((void**) &seg_split3, nPixels * sizeofint));
throw_on_cuda_error( cudaMalloc((void**) &seg_potts_label, nPixels * sizeofint));
throw_on_cuda_error( cudaMalloc((void**) &border_gpu, nPixels*sizeofbool));
throw_on_cuda_error( cudaMalloc((void**) &split_merge_pairs, 2*nPixels*sizeofint));
throw_on_cuda_error( cudaMalloc((void**) &split_merge_unique, 2*nPixels*sizeofint));
}
catch(thrust::system_error &e){
std::cerr << "CUDA error after cudaMalloc: " << e.what() << std::endl;
cudaSetDevice(0);
}
if (dim_x>0){
cout << "dim_x:" << dim_x << endl;
cout << "dim_y:" << dim_y << endl;
cout << "i_std:" << sp_options.i_std << endl;
cout << "nPixels_in_square_side:" << sp_options.nPixels_in_square_side << endl;
}
// initialize the gpu variables: seg_gpu, border_gpu, sp_params
nSPs = CudaInitSeg(seg_cpu, seg_gpu, split_merge_pairs, nPixels, sp_options.nPixels_in_square_side, dim_x, dim_y, sp_options.use_hex);
if (dim_x > 0) {
cout << "nSPs:" << nSPs << endl;
}
max_SP = nSPs;
int nSPs_buffer = nSPs * 50;
const int sofsparams = sizeof(superpixel_params);
const int sofsphelper = sizeof(superpixel_GPU_helper);
const int sofsphelper_sm = sizeof(superpixel_GPU_helper_sm);
const int sofpost_changes = sizeof(post_changes_helper);
sp_params_cpu = (superpixel_params*)malloc(nSPs_buffer * sofsparams);
try {
throw_on_cuda_error(cudaMalloc((void**)&sp_params, nSPs_buffer * sofsparams));
throw_on_cuda_error(cudaMalloc((void**)&sp_gpu_helper, nSPs_buffer * sofsphelper));
throw_on_cuda_error(cudaMalloc((void**)&sp_gpu_helper_sm, nSPs_buffer * sofsphelper_sm));
throw_on_cuda_error(cudaMalloc((void**)&post_changes, nPixels * sofpost_changes));
}
catch (thrust::system_error& e) {
std::cerr << "CUDA error after cudaMalloc: " << e.what() << std::endl;
cudaSetDevice(0);
}
CudaFindBorderPixels(seg_gpu, border_gpu, nPixels, dim_x, dim_y, 0);
CudaInitSpParams(sp_params, sp_options.s_std, sp_options.i_std, nSPs, nSPs_buffer, nPixels);
init_sp = true;
//warm_up();
}
int Superpixels::get_dim_y()
{
return dim_y;
}
int Superpixels::get_dim_x()
{
return dim_x;
}
bool* Superpixels::get_border_cpu() {
return border_cpu;
}
int* Superpixels::get_seg_cpu() {
cudaMemcpy(seg_cpu, seg_gpu, nPixels * sizeof(int), cudaMemcpyDeviceToHost);
return seg_cpu;
}
superpixel_params* Superpixels::get_sp_params() {
cudaMemcpy(sp_params_cpu, sp_params, nSPs_buffer * sizeof(superpixel_params), cudaMemcpyDeviceToHost);
return sp_params_cpu;
}
int Superpixels::get_nSPs() {
return nSPs;
}
void Superpixels::set_nSPs(int new_nSPs) {
nSPs = new_nSPs;
}
//read an rgb image, set the gpu copy, set the float_gpu to be the lab image
void Superpixels::load_img(float* imgP) {
memcpy(image_cpu, imgP, dim_i * nPixels * sizeof(unsigned char));
cudaMemcpy(image_gpu, image_cpu, dim_i * nPixels * sizeof(unsigned char), cudaMemcpyHostToDevice);
Rgb2Lab(image_gpu, image_gpu_double, nPixels);
}
// update seg_gpu, sp_gpu_helper and sp_params
void Superpixels::calc_seg() {
//sp_gpu_helper_sm[0].max_sp = max_SP;
int prior_sigma_s = sp_options.area * sp_options.area;
int prior_count = sp_options.area;
const int sizeofint = sizeof(int);
const int sizeoffloat = sizeof(float);
bool cal_cov = sp_options.calc_cov;
float i_std = sp_options.i_std;
float alpha = sp_options.alpha_hasting;
int s_std = sp_options.s_std;
int nInnerIters = sp_options.nInnerIters;
nSPs_buffer = nSPs * 45 ;
int count = 1;
int count_split =0;
for (int i = 0; i < sp_options.nEMIters*1; i++) {
//printf("%d \n",i);
//for (int i = 0; i < 3; i++) {
// "M step"
update_param(image_gpu_double, seg_gpu, sp_params, sp_gpu_helper, nPixels, nSPs, nSPs_buffer, dim_x, dim_y, prior_sigma_s, prior_count);
if((i<sp_options.nEMIters*20) && (i>-1) )
{
if(i>sp_options.nEMIters*0){
if((i%4==0)&&(count<100))
{
count+=1;
max_SP = CudaCalcSplitCandidate(image_gpu_double, split_merge_pairs, seg_gpu, border_gpu, sp_params ,sp_gpu_helper,sp_gpu_helper_sm, nPixels,dim_x,dim_y,nSPs_buffer,seg_split1,seg_split2, seg_split3,max_SP, count, i_std, alpha);
update_param(image_gpu_double, seg_gpu, sp_params, sp_gpu_helper, nPixels, nSPs, nSPs_buffer, dim_x, dim_y, prior_sigma_s, prior_count);
}
if((i%4==2)&&(count<100)){
for(int j=0; j<1; j++){
CudaCalcMergeCandidate(image_gpu_double, split_merge_pairs, seg_gpu, border_gpu, sp_params ,sp_gpu_helper,sp_gpu_helper_sm, nPixels,dim_x,dim_y,nSPs_buffer,count%2,i_std, alpha);
update_param(image_gpu_double, seg_gpu, sp_params, sp_gpu_helper, nPixels, nSPs, nSPs_buffer, dim_x, dim_y, prior_sigma_s, prior_count);
}
}
}
}
//"(Hard) E step" - find only the max value after potts term to get the best label
update_seg(image_gpu_double, seg_gpu, seg_potts_label, border_gpu, sp_params, J_i, logdet_Sigma_i, cal_cov, i_std, s_std, nInnerIters, nPixels, nSPs, nSPs_buffer, dim_x, dim_y, sp_options.beta_potts_term,post_changes);
cudaError_t err_t = cudaDeviceSynchronize();
if (err_t) {
std::cerr << "CUDA error after cudaDeviceSynchronize. " << err_t << std::endl;
cudaError_t err = cudaGetLastError();
}
}
CudaFindBorderPixels_end(seg_gpu, border_gpu, nPixels, dim_x, dim_y, 1);
}
//Set the pixels on the superpixel boundary to red:
Mat Superpixels::get_img_overlaid() {
float* image_border_cpu = (float*)malloc(dim_i * nPixels * sizeof(unsigned char));
CUDA_get_image_overlaid(image_gpu, border_gpu, nPixels, dim_x);
cudaMemcpy(image_border_cpu, image_gpu, dim_i * nPixels * sizeof(unsigned char), cudaMemcpyDeviceToHost);
Mat img_border(dim_y, dim_x, CV_8UC3, image_border_cpu);
return img_border;
}
//replace pixel color by superpixel mean
Mat Superpixels::get_img_cartoon() {
// fill in image_mean_gpu with superpixel mean in
uchar3* image_mean_gpu;
float* image_mean_cpu = (float*)malloc(dim_i * nPixels * sizeof(unsigned char));
cudaMalloc((void**)&image_mean_gpu, dim_i * nPixels * sizeof(uchar3));
CUDA_get_image_cartoon(image_mean_gpu, seg_gpu, sp_params, nPixels);
cudaMemcpy(image_mean_cpu, image_mean_gpu, dim_i * nPixels * sizeof(unsigned char), cudaMemcpyDeviceToHost);
Mat img_mean(dim_y, dim_x, CV_8UC3, image_mean_cpu);
return img_mean;
}
float* Superpixels::get_image_cpu() {
return image_cpu;
}
void Superpixels::convert_lab_to_rgb() {
Lab2Rgb(image_gpu, image_gpu_double, nPixels);
}
void Superpixels::gpu2cpu() {
cudaMemcpy(seg_cpu, seg_gpu, nPixels * sizeof(int), cudaMemcpyDeviceToHost);
cudaMemcpy(border_cpu, border_gpu, nPixels * sizeof(bool), cudaMemcpyDeviceToHost);
cudaMemcpy(sp_params_cpu, sp_params, nSPs_buffer * sizeof(superpixel_params), cudaMemcpyDeviceToHost);
get_unique_sp_idxs();
}
vector<int> Superpixels::get_superpixel_indexes(int sp_index) {
std::vector<int> sp_index_arr;
for (int i = 0; i < dim_y * dim_x; i++)
{
if (seg_cpu[i] == sp_index) {
sp_index_arr.push_back(i);
}
}
return sp_index_arr;
}
vector<unsigned char> Superpixels::get_superpixel_by_channel(int sp_index, int channel) {
std::vector<unsigned char> sp_pixels;
//calc start point by channel
float* start = image_cpu + (channel * nPixels);
for (int i = 0; i < nPixels; i++)
{
if (seg_cpu[i] == sp_index) {
sp_pixels.push_back(*(start + i));
}
}
return sp_pixels;
}
void Superpixels::cpu_merge_superpixels_pair(int sp_idx_1, int sp_idx_2) {
// update seg map cpu values
for (int i = 0; i < dim_y * dim_x; i++)
{
if (seg_cpu[i] == sp_idx_2) {
seg_cpu[i] = sp_idx_1;
sp_params_cpu[sp_idx_2].valid = 0;
}
/*printf("%d, %d \n",seg_gpu[i],sp_idx_2);
if (seg_gpu[i] == sp_idx_2) {
seg_gpu[i] = sp_idx_1;
sp_params[sp_idx_2].valid = 0;
}
*/
}
}
//input: vectors of sp_idx pairs to merge(size of vectors as the size of the pairs)
void Superpixels::cpu_merge_all_sp_pairs(vector<short> first, vector<short> second) {
cudaMemcpy(sp_params_cpu, sp_params, nSPs_buffer * sizeof(superpixel_params), cudaMemcpyDeviceToHost);
for (size_t i = 0; i < first.size(); i++)
{
short idx_sp_1 = first[i];
short idx_sp_2 = second[i];
cpu_merge_superpixels_pair(idx_sp_1, idx_sp_2);
}
// copy or update cpu_seg_map to gpu
cudaMemcpy(seg_gpu, seg_cpu, nPixels * sizeof(int), cudaMemcpyHostToDevice);
cudaMemcpy(sp_params, sp_params_cpu, nSPs_buffer * sizeof(superpixel_params), cudaMemcpyHostToDevice);
//TODO: remove?
CudaFindBorderPixels(seg_gpu, border_gpu, nPixels, dim_x, dim_y, 1);
//TODO: copy or update sp_params to gpu
}
/// <summary>
/// This function updates cpu_seg map to seg map after split with new superpixels
/// </summary>
/// <param name="original_sp_idx"></param>
/// <param name="new_sp_idx"></param>
void Superpixels::cpu_split_superpixel(int original_sp_idx, int new_sp_idx, int* proposed_seg_map)
{
// update seg map cpu values by passing over the indexes of proposed seg map split and update
for (int i = 0; i < dim_y * dim_x; i++)
{
if (proposed_seg_map[i] == new_sp_idx)
{
seg_cpu[i] = new_sp_idx;
sp_params_cpu[new_sp_idx].valid = 1;
//TODO: update sp_params also..
}
}
//TODO: remove sp_params of sp_idx_2
//TODO: remove sp_params of sp_idx_2
}
void Superpixels::cpu_split_superpixels(vector<int> first, vector<int> second, int* proposed_seg_map)
{
cudaMemcpy(sp_params_cpu, sp_params, nSPs_buffer * sizeof(superpixel_params), cudaMemcpyDeviceToHost);
for (int i = 0; i < first.size(); i++)
//for (size_t(0) i=0; first.size(); [&](size_t i))
{
short idx_sp_1 = first[i];
short idx_sp_2 = second[i];
if (idx_sp_2 > 0)
{
printf("idx_sp_2, %d\n", idx_sp_2);
cpu_split_superpixel(idx_sp_1, idx_sp_2, proposed_seg_map);
}
}
cudaMemcpy(seg_gpu, seg_cpu, nPixels * sizeof(int), cudaMemcpyHostToDevice);
cudaMemcpy(sp_params, sp_params_cpu, nSPs_buffer * sizeof(superpixel_params), cudaMemcpyHostToDevice);
CudaFindBorderPixels(seg_gpu, border_gpu, nPixels, dim_x, dim_y, 1);
}
vector<int> Superpixels::get_unique_sp_idxs() {
get_sp_params();
int n = get_dim_x() * get_dim_y() * sizeof(int) / sizeof(seg_cpu[0]);
vector<int> sp_idxs(seg_cpu, seg_cpu + n);//(first elem, last elem)
vector<int>::iterator it;
it = std::unique(sp_idxs.begin(), sp_idxs.end());
sp_idxs.erase(it, sp_idxs.end());
std::sort(sp_idxs.begin(), sp_idxs.end());
int uniqueCount = std::unique(sp_idxs.begin(), sp_idxs.end()) - sp_idxs.begin();
printf("ToTal number of SP: %d ", uniqueCount);
////it = std::unique(sp_idxs.begin(), sp_idxs.end());
// sp_idxs.erase(it, sp_idxs.end());
return sp_idxs;
}
Superpixels::~Superpixels()
{
if (init_sp){
free(sp_params_cpu);
cudaFree(sp_params);
cudaFree(sp_gpu_helper);
cudaFree(sp_gpu_helper_sm);
cudaFree(post_changes);
//cout << "free sp_params..." << endl;
cudaFree(seg_split1);
cudaFree(seg_split2);
cudaFree(seg_split3);
cudaFree(split_merge_pairs);
cudaFree(split_merge_unique);
free(image_cpu);
//cout << "free image_cpu" << endl;
cudaFree(image_gpu);
//cout << "free image_gpu" << endl;
cudaFree(image_gpu_double);
//cout << "free image_gpu_double" << endl;
free(border_cpu);
cudaFree(border_gpu);
//cout << "free border..." << endl;
free(seg_cpu);
cudaFree(seg_gpu);
//cout << "free seg..." << endl;
cudaFree(seg_potts_label);
}else{
cout << "init_sp = false" << endl;
}
init_sp = false;
// cout << "Object is being deleted" << endl;
}