Skip to content

Using Pytorch Lightning and WandbLogger for our JTML neural network segementation code

Notifications You must be signed in to change notification settings

BRIO-lab/LitJTML

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

57 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Lightning JTML (LitJTML)

This repo is for moving our JTML neural network code to PyTorch Lightning and using WandB logging.

Setup:

  1. Create the conda environment lit-jtml-env from the environment.yml using the command conda create env create -f environment.yml.
  2. Activate the conda env with conda activate lit-jtml-env.

Use:

  1. Be in the LitJTML directory (use the cd command to change the directory to the blah/blah/LitJTML/ directory).
  2. To fit (train) a model, call python scripts/fit.py my_config where my_config is the name of the config.py file in the config/ directory.
    • The config file should specify the model, data, and other parameters.

About

Using Pytorch Lightning and WandbLogger for our JTML neural network segementation code

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages