-
Notifications
You must be signed in to change notification settings - Fork 2
/
main.py
212 lines (185 loc) · 9.66 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import os
import argparse
import datetime
import random
import json
import time
from pathlib import Path
from tensorboardX import SummaryWriter
from copy import deepcopy
import clr
from inference import infer
import numpy as np
import torch
torch.multiprocessing.set_sharing_strategy('file_system')
from torch.utils.data import DataLoader, DistributedSampler
import data
import util.misc as utils
from data import build
from engine import evaluate, train_one_epoch
from models import build_model
from estimator import *
def get_args_parser():
# define task, label values, and output channels
tasks = {
#'MR': {'lab_values': [0, 200, 500, 600], 'out_channels': 4}
'MR': {'lab_values': [0, 1, 2, 3, 4, 5], 'out_channels': 4}
}
parser = argparse.ArgumentParser('Set transformer detector', add_help=False)
parser.add_argument('--lr', default=1e-4, type=float)
parser.add_argument('--batch_size', default=4, type=int)
parser.add_argument('--weight_decay', default=0, type=float)
parser.add_argument('--epochs', default=4000, type=int)
parser.add_argument('--lr_drop', default=1000, type=int)
parser.add_argument('--clip_max_norm', default=0.1, type=float,
help='gradient clipping max norm')
parser.add_argument('--tasks', default=tasks, type=dict)
parser.add_argument('--model', default='MSCMR', required=False)
# Model parameters
parser.add_argument('--frozen_weights', type=str, default=None,
help="Path to the pretrained model. If set, only the mask head will be trained")
parser.add_argument('--in_channels', default=1, type=int)
# * Loss coefficients
parser.add_argument('--multiDice_loss_coef', default=0, type=float)
parser.add_argument('--CrossEntropy_loss_coef', default=1, type=float)
parser.add_argument('--Rv', default=1, type=float)
parser.add_argument('--Lv', default=1, type=float)
parser.add_argument('--Myo', default=1, type=float)
parser.add_argument('--Avg', default=1, type=float)
# dataset parameters
parser.add_argument('--dataset', default='MSCMR_dataset', type=str,
help='multi-sequence CMR segmentation dataset')
parser.add_argument('--output_dir', default='/data/zhangke/MSCMR_ShapePU/',
help='path where to save, empty for no saving')
parser.add_argument('--device', default='cuda', type=str,
help='device to use for training / testing')
parser.add_argument('--GPU_ids', type=str, default = '0', help = 'Ids of GPUs')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--eval', default = False, action='store_true', help = "evaluate the performance on test set")
parser.add_argument('--num_workers', default=0, type=int)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
return parser
def main(args):
utils.init_distributed_mode(args)
writer = SummaryWriter(log_dir=args.output_dir + '/summary')
print(args)
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
model, criterion, postprocessors, visualizer = build_model(args)
model.to(device)
print(model)
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('number of params:', n_parameters)
param_dicts = [{"params": [p for n, p in model_without_ddp.named_parameters() if p.requires_grad]}]
optimizer = torch.optim.Adam(param_dicts, lr=args.lr,
weight_decay=args.weight_decay)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.lr_drop)
print('Building validation dataset...')
dataset_val_dict = build(image_set='val', args=args)
num_val = [len(v) for v in dataset_val_dict.values()]
print('Number of validation images: {}'.format(sum(num_val)))
sampler_val_dict = {k : torch.utils.data.SequentialSampler(v) for k, v in dataset_val_dict.items()}
dataloader_val_dict = {
k : DataLoader(v1, args.batch_size, sampler=v2, drop_last=False, collate_fn=utils.collate_fn, num_workers=args.num_workers)
for (k, v1), v2 in zip(dataset_val_dict.items(), sampler_val_dict.values())
}
if args.frozen_weights is not None:
checkpoint = torch.load(args.frozen_weights, map_location='cpu')
model_without_ddp.whst.load_state_dict(checkpoint['model'])
output_dir = Path(args.output_dir)
if args.resume:
checkpoint = torch.load(args.resume, map_location='cpu')
model_without_ddp.load_state_dict(checkpoint['model'])
if not args.eval and 'optimizer' in checkpoint and 'epoch' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer'])
args.start_epoch = checkpoint['epoch'] + 1
if args.eval:
infer(model, criterion, device)
print("Start training")
best_dic = None
best_dice = None
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
# the negative loss of PU learning is evoked after 100 epoches
estimate_alpha = True
if epoch <= 99:
estimate_alpha = False
# dataset_hold_dict is optional in shapePU, you can use it to valid if the estimated ratio is accurate. In the training, we do not use it.
dataset_train_dict, dataset_hold_dict = build(image_set='train', args=args)
sampler_train_dict = {k : torch.utils.data.RandomSampler(v) for k, v in dataset_train_dict.items()}
sampler_hold_dict = {k : torch.utils.data.RandomSampler(v) for k, v in dataset_hold_dict.items()}
batch_sampler_train = {
k : torch.utils.data.BatchSampler(v, args.batch_size, drop_last=True) for k, v in sampler_train_dict.items()
}
batch_sampler_hold = {
k : torch.utils.data.BatchSampler(v, args.batch_size, drop_last=True) for k, v in sampler_hold_dict.items()
}
dataloader_train_dict = {
k : DataLoader(v1, batch_sampler=v2, collate_fn=utils.collate_fn, num_workers=args.num_workers)
for (k, v1), v2 in zip(dataset_train_dict.items(), batch_sampler_train.values())
}
dataloader_hold_dict = {
k : DataLoader(v1, batch_sampler=v2, collate_fn=utils.collate_fn, num_workers=args.num_workers)
for (k, v1), v2 in zip(dataset_hold_dict.items(), batch_sampler_hold.values())
}
optimizer.param_groups[0]['lr'] = 1e-4
# optimizer.param_groups[0]['lr'] = clr.cyclic_learning_rate(epoch, mode='exp_range', gamma=1)
train_stats = train_one_epoch(model, criterion, dataloader_train_dict, optimizer, device, epoch, dataloader_hold_dict, estimate_alpha)
test_stats = evaluate(model, criterion, postprocessors, dataloader_val_dict, device, args.output_dir, visualizer, epoch, writer)
dice_score = test_stats["Avg"]
print("dice score:", dice_score)
if args.output_dir:
checkpoint_paths = [output_dir / 'checkpoint.pth']
if best_dice == None or dice_score > best_dice:
best_dice = dice_score
best_dic = deepcopy(test_stats)
print("Update best model!")
checkpoint_paths.append(output_dir / 'best_checkpoint.pth')
if dice_score > 0.73:
print("Update high dice score model!")
file_name = str(dice_score)[0:6]+'high_checkpoint.pth'
checkpoint_paths.append(output_dir / file_name)
# extra checkpoint before LR drop and every 100 epochs
if (epoch + 1) % args.lr_drop == 0 or (epoch + 1) % 100 == 0:
checkpoint_paths.append(output_dir / f'checkpoint{epoch:04}.pth')
for checkpoint_path in checkpoint_paths:
utils.save_on_master({
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'args': args,
}, checkpoint_path)
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
**{f'test_{k}': v for k, v in test_stats.items()},
'epoch': epoch,
'n_parameters': n_parameters}
if args.output_dir and utils.is_main_process():
with (output_dir / "log.txt").open("a") as f:
f.write(json.dumps(log_stats) + "\n")
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
parser = argparse.ArgumentParser('MSCMR training and evaluation script', parents=[get_args_parser()])
args = parser.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "{}".format(args.GPU_ids)
print(torch.cuda.is_available())
main(args)