-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathorganize_results.py
executable file
·93 lines (74 loc) · 2.79 KB
/
organize_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sun Aug 13 22:40:18 2023
@author: cmu
"""
import os
import shutil
import pickle
import matplotlib.pyplot as plt
from ModelClass import ModelClass
import numpy as np
import matplotlib
matplotlib.rcParams['figure.autolayout'] = True
images_dir = 'final_images'
if not os.path.exists(images_dir):
os.mkdir(images_dir)
models = [m for m in os.listdir('Results') if m.startswith('bench')]
#model_lists = ['bench1_dt1,2,4,8_r1_model1']
for model in models:
src = 'Results/' + model + '/final_plot.png'
dst = images_dir + '/' + model + '.png'
try:
shutil.copy(src, dst)
except:
pass
def sorter(model_name):
rollout = int(model_name.split('_')[-2][1:])
model_idx = int(model_name.split('_')[-1][5:])
return (rollout, model_idx)
# bar plot setting
colors = ['red', 'orange', 'lightgreen', 'blue']
plt.rcParams.update({'font.size': 20})
w = 0.05
for b in [1,2,3]:
models = [m for m in os.listdir('Results') if m.startswith(f'bench{b}')]
models = sorted(models, key=sorter)
# print('\n'.join(models))
string = f'bench {b}\n'
string += 80*'='+'\n'
results = {m:{r:{n_dts:[] for n_dts in [1,2,3,4]} for r in [1,2,4,8]} for m in range(6)}
plt.figure(figsize=(20,5))
for i, model in enumerate(models):
Model = ModelClass(model)
with open(Model.result_dir+'/final_results.pickle', 'rb') as f:
result_dict = pickle.load(f)
r, model_idx = sorter(model)
for n_dts in [1,2,3,4]:
model_type = (model_idx-1)//3
results[model_type][r][n_dts].append(result_dict[n_dts]['val_loss'].mean())
for model_type in range(5):
for ir,r in enumerate([1,2,4,8]):
if r==8 and b==1: continue
for idt, n_dts in enumerate([1,2,3,4]):
this_results = 100*np.array(results[model_type][r][n_dts])
string += f'model {model_type} | rollout {r} | n_dts : {n_dts}\n'
string += f'{np.mean(this_results):.2f} +- {np.std(this_results):.2f}\n'
string += f'best {np.min(this_results):.2f}\n'
plt.bar(model_type+(4*idt+ir-7.5)*w, np.mean(this_results), 0.5*w,
color=colors[idt], yerr=np.std(this_results))
string += '\n'
string += 80*'='+'\n'
plt.xticks(np.arange(5), [f'1S 2S 3S 4S\nM{i}' for i in range(5)])
plt.ylabel("nRMSE (%)")
ylim = {1:[0,4], 2:[10,20], 3:[10,20]}
plt.xlim(-0.5, 4.5)
plt.ylim(ylim[b])
plt.grid(linestyle='--', axis='y')
plt.yticks(np.linspace(*ylim[b], 11))
plt.title(f'The effect of multi-scale time-stepping and rollout on NS{b} dataset')
plt.savefig(f'bench{b}.png')
plt.close()
with open(f'bench{b}.txt', 'w') as f:
f.write(string)