-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathpower_square_gym.py
295 lines (244 loc) · 13 KB
/
power_square_gym.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import gym
from gym import spaces
from EagarTsaiModel import EagarTsai as ET
import numpy as np
import os
from stable_baselines3.common.env_checker import check_env
from matplotlib import pyplot as plt
from pylab import gca
#This script implements the RL environment as a custom OpenAI Gym environment, using Stable Baselines 3
# Dependencies: Stable Baselines 3, OpenAI Gym, Pytorch
# Specify local figure directory to store plots, diagnostic info
fig_dir = 'results/square_power_control_figures'
if not os.path.exists(fig_dir):
os.makedirs(fig_dir, exist_ok = True)
def frame_tick(frame_width = 2, tick_width = 1.5):
ax = gca()
for axis in ['top','bottom','left','right']:
ax.spines[axis].set_linewidth(frame_width)
plt.tick_params(direction = 'in',
width = tick_width)
class EnvRLAM(gym.Env):
"""Custom Environment that follows gym interface"""
metadata = {'render.modes': ['human']}
def __init__(self, plot = False, frameskip = 1, num_iter = 0, verbose = 0):
super(EnvRLAM, self).__init__() # Define action and observation space
# They must be gym.spaces objects
self.plot = plot
self.action_space = spaces.Box(low=np.array([-1]), high=np.array([1]), dtype=np.float64)
self.squaresize = 10
self.spacing = 20e-6
self.observation_space = spaces.Box(low=300, high=20000, shape=(9, self.squaresize, self.squaresize,), dtype=np.float64)
self.ETenv = ET(20e-6, V = 0.8, bc = 'flux', spacing = self.spacing)
self.current_step = 0
self.depths = []
self.times =[]
self.indtimes = []
self.inddepth = []
self.indpower = []
self.indvel = []
self.power = []
self.velocity = []
self.hv = 0
self.current = 0
self.angle = 0
self.dt = 0
self.distance = 0
self.dir = 0
self.residual = False
self.reward = 0
self.timesteps = 0
self.num_iter = num_iter
self.frameskip = frameskip
self.verbose = verbose
self.total_steps = 0
buffer = np.stack((self.ETenv.theta[0:self.squaresize, 0:self.squaresize, 0], self.ETenv.theta[0:self.squaresize, 0:self.squaresize, 0], self.ETenv.theta[0:self.squaresize, 0:self.squaresize, 0],
self.ETenv.theta[0:self.squaresize, 0:self.squaresize, 0], self.ETenv.theta[0:self.squaresize, 0:self.squaresize, 0], self.ETenv.theta[0:self.squaresize, 0:self.squaresize, 0],
self.ETenv.theta[0:self.squaresize, 0:self.squaresize, 0], self.ETenv.theta[0:self.squaresize, 0:self.squaresize, 0], self.ETenv.theta[0:self.squaresize, 0:self.squaresize, 0]))
self.buffer = (buffer - np.mean(buffer))
def step(self, action):
time = 125e-6
power = action[0]*250 + 250
for m in range(self.frameskip):
done = False
self.current_step += 1
V = 125e-6*0.8/time
#
self.velocity.append(V)
self.power.append(power)
idx = self.current_step -1
if idx < 0:
idx = 0
if self.timesteps % 4 == 0:
self.dir = 'right'
angle = 0
if self.distance >= 1250e-6*0.8 - 125e-6:
self.dir = 'up'
self.distance = 0
angle = np.pi/2
self.timesteps += 1
elif self.timesteps % 4 == 1 or self.timesteps % 4 == 3:
angle = np.pi/2
self.dir = 'up'
if self.distance >= 120e-6*0.8:
self.timesteps += 1
self.distance = 0
self.dir = 0
if self.timesteps % 4 == 2:
angle = np.pi
if self.timesteps % 4 == 0:
angle = 0
elif self.timesteps % 4 == 2:
self.dir = 'left'
angle = np.pi
if self.distance >= 1250e-6*0.8 - 125e-6:
self.dir = 'up'
self.distance = 0
angle = np.pi/2
self.timesteps += 1
self.ETenv.forward(time, angle, V = V, P = power)
self.distance += 125e-6*0.8
meltpool = self.ETenv.meltpool()
self.depths.append(meltpool)
self.times.append(self.ETenv.time)
if m == 0:
self.inddepth.append(meltpool)
self.indtimes.append(self.ETenv.time)
self.indvel.append(V)
self.indpower.append(power)
reward = 1 - np.abs((55e-6 + meltpool)/25e-6)
self.reward += reward
# Plotting diagnostics
if self.plot:
np.savetxt(fig_dir + "/" + "powercontrolsquaretimesnorm",np.array(self.times)*1e3)
np.savetxt(fig_dir + "/" + "powercontrolsquaredepthsframeskip" + str(self.frameskip), np.array(self.depths))
np.savetxt(fig_dir + "/" + "powercontrolsquarevelocityframeskip" + str(self.frameskip), np.array(self.velocity))
testfigs = self.ETenv.plot()
highxlim = np.max(self.times)
testfigs[0].savefig(fig_dir + "/" + str(self.frameskip) + 'powercontrolsquare_test' + '%04d' % self.current_step + ".png")
plt.clf()
font_size = 14
plt.plot(np.array(self.times)*1e3, np.array(self.depths)*1e6, linewidth = 2.0)
plt.ylim(-120, 10)
plt.xlabel(r'Time, $t$ [ms]', fontsize = font_size)
plt.ylabel(r'Melt Depth, $d$, [$\mu$m]', fontsize = font_size)
plt.plot(np.array(self.indtimes)*1e3, np.array(self.inddepth)*1e6, 'k.')
np.max(np.array(self.times))
plt.xlim(0, highxlim*1e3)
plt.title(str(round(self.ETenv.time*1e6)) + r'[$\mu$s] ')
plt.plot(np.arange(0, np.max(np.array(self.times))*1e3, 0.01), -55*np.ones(len(np.arange(0, np.max(np.array(self.times))*1e3, 0.01))), 'k--')
plt.savefig(fig_dir + "/" + str(self.frameskip) + 'powercontrolsquaretestdepth'+ '%04d' % self.current_step + ".png")
plt.clf()
plt.plot(np.array(self.times)*1e3, self.velocity)
plt.plot(np.array(self.indtimes)*1e3, np.array(self.indvel),'k.', linewidth = 2.0)
plt.xlabel(r'Time, $t$ [ms]', fontsize = font_size)
plt.ylabel(r'Velocity, $V$, [m/s]', fontsize = font_size)
plt.xlim(0, highxlim*1e3)
plt.ylim(0, 3.0)
plt.title(str(round(self.ETenv.time*1e6)) + r'[$\mu$s] ')
plt.savefig(fig_dir + "/" +str(self.frameskip) + 'powercontrolsquaretestvelocity'+ '%04d' % self.current_step + ".png")
plt.clf()
plt.plot(np.array(self.times)*1e3, self.power)
plt.plot(np.array(self.indtimes)*1e3, np.array(self.indpower), 'k.', linewidth = 2.0)
plt.xlabel(r'Time, $t$ [ms]', fontsize = font_size)
plt.ylabel(r'Power, $P$, [W]', fontsize = font_size)
plt.xlim(0, highxlim*1e3)
plt.ylim(-10, 600)
plt.title(str(round(self.ETenv.time*1e6)) + r'[$\mu$s] ')
plt.savefig(fig_dir + "/" +str(self.frameskip) + 'powercontrolsquaretestpower'+ '%04d' % self.current_step + ".png")
plt.clf()
idxx = self.ETenv.location_idx[0]
idxy = self.ETenv.location_idx[1]
self.buffer[8, :, :] = np.copy(self.buffer[5, :, :])
self.buffer[7, :, :] = np.copy(self.buffer[4, :, :])
self.buffer[6, :, :] = np.copy(self.buffer[3, :, :])
self.buffer[5, :, :] = np.copy(self.buffer[2, :, :])
self.buffer[4, :, :] = np.copy(self.buffer[1, :, :])
self.buffer[3, :, :] = np.copy(self.buffer[0, :, :])
padsize = self.squaresize
theta_pad = np.copy(np.pad(self.ETenv.theta, ((padsize, padsize), (padsize, padsize), (0, 0)), mode = 'reflect'))
try:
self.buffer[2, :, :] = theta_pad[padsize+idxx-self.squaresize//2:padsize+idxx+self.squaresize//2, padsize+idxy-self.squaresize//2:padsize+idxy+self.squaresize//2, -1]
self.buffer[1, :, :] = theta_pad[padsize+idxx-self.squaresize//2:padsize+idxx+self.squaresize//2, padsize+idxy, 0:self.squaresize]
self.buffer[0, :, :] = theta_pad[padsize+idxx, padsize+idxy-self.squaresize//2:padsize+idxy+self.squaresize//2, 0:self.squaresize]
except:
breakpoint()
self.buffer[0:3] = (self.buffer[0:3] - np.mean(self.buffer[0:3], axis = (1,2))[:, None, None])/(np.std(self.buffer[0:3], axis = (1,2))[:, None, None] + 1e-10)
obs = self.buffer
if self.timesteps > 19:
minmax_reward = (np.max(self.depths[20:]) - np.min(self.depths[20:]))/25e-6
gradient_reward = np.mean(np.abs(np.diff(self.depths[20:])/25e-6))
reward = self.reward/20 - 0.5*minmax_reward
if self.verbose == 2:
print(reward, "reward", "velocity", V, "power", power, "timestep", self.total_steps, "amplitude", minmax_reward)
print("Episode done")
if self.verbose == 1:
if self.total_steps % 1 == 0:
print(str(self.total_steps*8) + " episodes run, current reward = " + str(reward))
if self.verbose == 0:
if self.total_steps % 10 == 0:
print(str(self.total_steps*8) + " episodes run, current reward = " + str(reward))
done = True
self.total_steps += 1
else:
done = False
if done:
break
return obs, reward, done,{}
# Execute one time step within the environment
def reset(self):
self.ETenv.reset()
self.current_step = 0
self.hv = 0
self.current = 0
self.angle = 0
self.residual = False
self.dir = 0
step = 2
self.reward = 0
self.timesteps = 0
self.dt = 0
self.distance = 0
self.buffer = np.stack((self.ETenv.theta[ 0:self.squaresize, 0:self.squaresize, 0], self.ETenv.theta[ 0:self.squaresize, 0:self.squaresize, 0], self.ETenv.theta[ 0:self.squaresize, 0:self.squaresize, 0],
self.ETenv.theta[ 0:self.squaresize, 0:self.squaresize, 0], self.ETenv.theta[ 0:self.squaresize, 0:self.squaresize, 0], self.ETenv.theta[ 0:self.squaresize, 0:self.squaresize, 0],
self.ETenv.theta[0:self.squaresize, 0:self.squaresize, 0], self.ETenv.theta[0:self.squaresize, 0:self.squaresize, 0], self.ETenv.theta[0:self.squaresize, 0:self.squaresize, 0]))
buffer = np.stack((
self.ETenv.theta[0:self.squaresize, 0:self.squaresize, 0], self.ETenv.theta[0:self.squaresize, 0:self.squaresize, 0], self.ETenv.theta[0:self.squaresize, 0:self.squaresize, 0],
self.ETenv.theta[0:self.squaresize, 0:self.squaresize, 0], self.ETenv.theta[0:self.squaresize, 0:self.squaresize, 0], self.ETenv.theta[0:self.squaresize, 0:self.squaresize, 0],
self.ETenv.theta[0:self.squaresize, 0:self.squaresize, 0], self.ETenv.theta[0:self.squaresize, 0:self.squaresize, 0], self.ETenv.theta[0:self.squaresize, 0:self.squaresize, 0]))
self.buffer = (buffer - np.mean(buffer))
return buffer
# Reset the state of the environment to an initial state
def render(self, mode='console', close=False):
pass
def plot(self):
pass
def plot_buffer(self, action):
time = action[0]*125e-6 + 140e-6
power = 145
V = 100e-6/time
buffer_dir = fig_dir + '/buffer/'
if not os.path.exists(buffer_dir):
os.makedirs(buffer_dir)
for index in range(9):
plt.close('all')
try:
if index % 3 == 2:
plt.pcolormesh(self.buffer[index].T, cmap = 'jet')
if index % 3 == 1:
plt.pcolormesh(self.buffer[index].T, cmap = 'jet')
if index % 3 == 0:
plt.pcolormesh(self.buffer[index].T, cmap = 'jet')
# breakpoint()
except Exception as e:
print(e)
breakpoint()
print('saved')
plt.title("time: " + str(V) + " power: " + str(power))
plt.savefig(buffer_dir + str(index) + "closesquarebuffer" + '%04d' % self.current_step + ".png")
plt.clf()
plt.close('all')
def main():
env = EnvRLAM()
# It will check your custom environment and output additional warnings if needed
check_env(env)