-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmain.py
363 lines (275 loc) · 14.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
# Copyright 2019 The Texar Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Modifications copyright (C) 2020 Bastian Oppermann
# The original, unmodified file(s) can be found at
# https://github.com/asyml/texar/blob/413e07f859acbbee979f274b52942edd57b335c1/examples/transformer/transformer_main.py#
# and
# https://github.com/asyml/texar/blob/413e07f859acbbee979f274b52942edd57b335c1/examples/bert/bert_classifier_main.py
import os
import tensorflow as tf
import texar.tf as tx
from texar.tf.modules import TransformerDecoder, BERTEncoder
from texar.tf.utils import transformer_utils
from bleu_tool import bleu_wrapper
from rouge import FilesRouge
from time import gmtime, strftime
import config_model
import config_data
from utils import utils
from utils.data_utils import bos_token_id, eos_token_id, InputExample, convert_single_example, PredictProcessor
from utils.file_writer_utils import write_token_id_arrays_to_text_file
flags = tf.flags
flags.DEFINE_string("run_mode", "train_and_evaluate", "Either train_and_evaluate, test or predict.")
FLAGS = flags.FLAGS
model_dir = './outputs'
def print_rouge_scores(scores):
"""Prints the rouge scores in a nice, human-readable format."""
rouge_1 = scores['rouge-1']
rouge_2 = scores['rouge-2']
rouge_l = scores['rouge-l']
print("┌─────────┬────────┬────────┬────────┐")
print("│ Metric │ Pre │ Rec │ F │")
print("├─────────┼────────┼────────┼────────┤")
print("│ ROUGE-1 │ %.4f │ %.4f │ %.4f │" % (rouge_1['p'], rouge_1['r'], rouge_1['f']))
print("│ ROUGE-2 │ %.4f │ %.4f │ %.4f │" % (rouge_2['p'], rouge_2['r'], rouge_2['f']))
print("│ ROUGE-L │ %.4f │ %.4f │ %.4f │" % (rouge_l['p'], rouge_l['r'], rouge_l['f']))
print("└─────────┴────────┴────────┴────────┘")
def get_data_iterator():
train_dataset = tx.data.TFRecordData(hparams=config_data.train_hparam)
eval_dataset = tx.data.TFRecordData(hparams=config_data.eval_hparam)
test_dataset = tx.data.TFRecordData(hparams=config_data.test_hparam)
iterator = tx.data.FeedableDataIterator({'train': train_dataset, 'eval': eval_dataset, 'test': test_dataset})
return iterator
def main():
tokenizer = tx.data.BERTTokenizer(pretrained_model_name=config_model.bert['pretrained_model_name'])
data_iterator = get_data_iterator()
batch = data_iterator.get_next()
src_input_ids = batch['src_input_ids']
src_segment_ids = batch['src_segment_ids']
tgt_input_ids = batch['tgt_input_ids']
tgt_labels = batch['tgt_labels']
is_target = tf.cast(tf.not_equal(tgt_labels, 0), tf.float32)
batch_size = tf.shape(src_input_ids)[0]
input_length = tf.reduce_sum(1 - tf.cast(tf.equal(src_input_ids, 0), tf.int32), axis=1)
beam_width = config_model.beam_width
encoder = BERTEncoder(pretrained_model_name=config_model.bert['pretrained_model_name'])
encoder_output, encoder_pooled_output = encoder(inputs=src_input_ids,
segment_ids=src_segment_ids,
sequence_length=input_length)
vocab_size = BERTEncoder.default_hparams()['vocab_size']
src_word_embedder = encoder.word_embedder
pos_embedder = encoder.position_embedder
tgt_embedding = tf.concat(
[tf.zeros(shape=[1, src_word_embedder.dim]),
src_word_embedder.embedding[1:, :]],
axis=0)
tgt_embedder = tx.modules.WordEmbedder(tgt_embedding)
tgt_word_embeds = tgt_embedder(tgt_input_ids)
tgt_word_embeds = tgt_word_embeds * config_model.hidden_dim ** 0.5
tgt_seq_len = tf.ones([batch_size], tf.int32) * tf.shape(tgt_input_ids)[1]
tgt_pos_embeds = pos_embedder(sequence_length=tgt_seq_len)
tgt_input_embedding = tgt_word_embeds + tgt_pos_embeds
_output_w = tf.transpose(tgt_embedder.embedding, (1, 0))
decoder = TransformerDecoder(vocab_size=vocab_size,
output_layer=_output_w,
hparams=config_model.decoder)
# For training
decoder_outputs = decoder(
memory=encoder_output,
memory_sequence_length=input_length,
inputs=tgt_input_embedding,
decoding_strategy='train_greedy',
mode=tf.estimator.ModeKeys.TRAIN
)
mle_loss = transformer_utils.smoothing_cross_entropy(
decoder_outputs.logits, tgt_labels, vocab_size, config_model.loss_label_confidence)
mle_loss = tf.reduce_sum(mle_loss * is_target) / tf.reduce_sum(is_target)
global_step = tf.Variable(0, dtype=tf.int64, trainable=False)
learning_rate = tf.placeholder(tf.float64, shape=(), name='lr')
train_op = tx.core.get_train_op(
mle_loss,
learning_rate=learning_rate,
global_step=global_step,
hparams=config_model.opt)
tf.summary.scalar('lr', learning_rate)
tf.summary.scalar('mle_loss', mle_loss)
summary_merged = tf.summary.merge_all()
# For inference (beam-search)
start_tokens = tf.fill([batch_size], bos_token_id)
saver = tf.train.Saver(max_to_keep=5)
best_results = {'score': 0, 'epoch': -1}
def _embedding_fn(x, y):
x_w_embed = tgt_embedder(x)
y_p_embed = pos_embedder(y)
return x_w_embed * config_model.hidden_dim ** 0.5 + y_p_embed
predictions = decoder(
memory=encoder_output,
memory_sequence_length=input_length,
beam_width=beam_width,
start_tokens=start_tokens,
end_token=eos_token_id,
embedding=_embedding_fn,
max_decoding_length=config_data.max_decoding_length,
decoding_strategy='infer_greedy',
mode=tf.estimator.ModeKeys.PREDICT)
# Uses the best sample by beam search
beam_search_ids = predictions['sample_id'][:, :, 0]
def _train_epoch(sess, epoch, step, smry_writer):
print('Start epoch %d' % epoch)
data_iterator.restart_dataset(sess, 'train')
fetches = {
'train_op': train_op,
'loss': mle_loss,
'step': global_step,
'smry': summary_merged
}
while True:
try:
feed_dict = {
data_iterator.handle: data_iterator.get_handle(sess, 'train'),
tx.global_mode(): tf.estimator.ModeKeys.TRAIN,
learning_rate: utils.get_lr(step, config_model)
}
fetches_ = sess.run(fetches, feed_dict)
step, loss = fetches_['step'], fetches_['loss']
# Display every display_steps
display_steps = config_data.display_steps
if display_steps > 0 and step % display_steps == 0:
print('[%s] step: %d, loss: %.4f' % (strftime("%Y-%m-%d %H:%M:%S", gmtime()), step, loss))
smry_writer.add_summary(fetches_['smry'], global_step=step)
# Eval every eval_steps
eval_steps = config_data.eval_steps
if eval_steps > 0 and step % eval_steps == 0 and step > 0:
_eval_epoch(sess, epoch, 'eval')
except tf.errors.OutOfRangeError:
break
return step
def _eval_epoch(sess, epoch, mode):
print('Starting %s' % mode)
if mode is not 'eval' and not 'test':
print("Unknown mode!")
raise
dataset_name = 'eval' if mode is 'eval' else 'test'
data_iterator.restart_dataset(sess, dataset_name)
references, hypotheses, inputs = [], [], []
while True:
try:
feed_dict = {
data_iterator.handle: data_iterator.get_handle(sess, dataset_name),
tx.global_mode(): tf.estimator.ModeKeys.EVAL,
}
fetches = {
'beam_search_ids': beam_search_ids,
'tgt_labels': tgt_labels,
# src_input_ids is not necessary for calculating the metric, but allows us to write it to a file.
'src_input_ids': src_input_ids
}
fetches_ = sess.run(fetches, feed_dict=feed_dict)
hypotheses.extend(h.tolist() for h in fetches_['beam_search_ids'])
references.extend(r.tolist() for r in fetches_['tgt_labels'])
inputs.extend(h.tolist() for h in fetches_['src_input_ids'])
hypotheses = utils.list_strip_eos(hypotheses, eos_token_id)
references = utils.list_strip_eos(references, eos_token_id)
except tf.errors.OutOfRangeError:
break
def calculate_scores():
hyp_fn, ref_fn = 'tmp.%s.src' % mode, 'tmp.%s.tgt' % mode
write_token_id_arrays_to_text_file(hypotheses, os.path.join(model_dir, hyp_fn), tokenizer)
write_token_id_arrays_to_text_file(references, os.path.join(model_dir, ref_fn), tokenizer)
hyp_fn, ref_fn = os.path.join(model_dir, hyp_fn), os.path.join(model_dir, ref_fn)
files_rouge = FilesRouge(hyp_fn, ref_fn)
rouge_scores = files_rouge.get_scores(avg=True)
bleu_score = bleu_wrapper(ref_fn, hyp_fn, case_sensitive=True)
return rouge_scores, bleu_score
if mode == 'eval':
try:
rouge_scores, bleu_score = calculate_scores()
except ValueError:
print("Failed to calculate rouge scores!")
return
print_rouge_scores(rouge_scores)
print('epoch: %d, bleu_score %.4f' % (epoch, bleu_score))
if bleu_score > best_results['score']:
best_results['score'] = bleu_score
best_results['epoch'] = epoch
model_path = os.path.join(model_dir, 'best-model.ckpt')
print('saving model to %s' % model_path)
# Also save the best results in a text file for manual evaluation
write_token_id_arrays_to_text_file(inputs, os.path.join(model_dir, 'eval-inputs.txt'), tokenizer)
write_token_id_arrays_to_text_file(hypotheses, os.path.join(model_dir, 'eval-predictions.txt'),
tokenizer)
write_token_id_arrays_to_text_file(references, os.path.join(model_dir, 'eval-targets.txt'), tokenizer)
saver.save(sess, model_path)
elif mode == 'test':
rouge_scores, bleu_score = calculate_scores()
print_rouge_scores(rouge_scores)
print('bleu_score %.4f' % bleu_score)
# Also save the results in a text file for manual evaluation
write_token_id_arrays_to_text_file(inputs, os.path.join(model_dir, 'test-inputs.txt'), tokenizer)
write_token_id_arrays_to_text_file(hypotheses, os.path.join(model_dir, 'test-predictions.txt'), tokenizer)
write_token_id_arrays_to_text_file(references, os.path.join(model_dir, 'test-targets.txt'), tokenizer)
def _predict(sess, examples: [InputExample]):
hypotheses, inputs = [], []
features = []
for example in examples:
feature = convert_single_example(ex_index=0, example=example, max_seq_length=config_data.max_seq_length,
tokenizer=tokenizer)
features.append(feature)
for feature in features:
feed_dict = {
src_input_ids: [feature.src_input_ids],
src_segment_ids: [feature.src_segment_ids],
tx.global_mode(): tf.estimator.ModeKeys.PREDICT,
}
fetches = {
'beam_search_ids': beam_search_ids,
'src_input_ids': src_input_ids
}
fetches_ = sess.run(fetches, feed_dict=feed_dict)
hypotheses.extend(h.tolist() for h in fetches_['beam_search_ids'])
inputs.extend(h.tolist() for h in fetches_['src_input_ids'])
hypotheses = utils.list_strip_eos(hypotheses, eos_token_id)
write_token_id_arrays_to_text_file(inputs, os.path.join(model_dir, 'predict-inputs.txt'), tokenizer)
write_token_id_arrays_to_text_file(hypotheses, os.path.join(model_dir, 'predict-predictions.txt'), tokenizer)
# Run the graph
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
sess.run(tf.tables_initializer())
smry_writer = tf.summary.FileWriter(model_dir, graph=sess.graph)
if FLAGS.run_mode == 'train_and_evaluate':
print('Begin running with %s mode' % FLAGS.run_mode)
if tf.train.latest_checkpoint(model_dir) is not None:
print('Restore latest checkpoint in %s' % model_dir)
saver.restore(sess, tf.train.latest_checkpoint(model_dir))
step = 0
for epoch in range(config_data.max_train_epoch):
step = _train_epoch(sess, epoch, step, smry_writer)
elif FLAGS.run_mode == 'test':
print('Begin running with %s mode' % FLAGS.run_mode)
print('Restore latest checkpoint in %s' % model_dir)
saver.restore(sess, tf.train.latest_checkpoint(model_dir))
_eval_epoch(sess, 0, mode='test')
elif FLAGS.run_mode == 'predict':
print('Begin running with %s mode' % FLAGS.run_mode)
print('Restore latest checkpoint in %s' % model_dir)
saver.restore(sess, tf.train.latest_checkpoint(model_dir))
processor = PredictProcessor()
_predict(sess=sess,
examples=processor.get_examples(data_dir='./data'))
else:
raise ValueError('Unknown mode: {}'.format(FLAGS.run_mode))
if __name__ == '__main__':
main()