-
Notifications
You must be signed in to change notification settings - Fork 18
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
mariesieger
committed
Nov 15, 2024
1 parent
1ba8261
commit ffb7fa4
Showing
1 changed file
with
65 additions
and
0 deletions.
There are no files selected for viewing
65 changes: 65 additions & 0 deletions
65
Benchmark-Models/Mishra_MetabEng2023/README-petab-files.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1 +1,66 @@ | ||
```python | ||
|
||
import pandas as pd | ||
import matplotlib.pyplot as plt | ||
from matplotlib import cm | ||
|
||
def plot_measurements_vs_simulation(simulation_df, measurement_df, output_file=None): | ||
""" | ||
Generates a logarithmic scatter plot comparing measurements and simulations. | ||
Parameters: | ||
simulation_df (pd.DataFrame): DataFrame containing simulation data. | ||
measurement_df (pd.DataFrame): DataFrame containing measurement data. | ||
output_file (str, optional): If provided, saves the plot to this file. Defaults to None. | ||
Returns: | ||
None | ||
""" | ||
# Merge the dataframes on relevant columns | ||
df_merged = pd.merge( | ||
pd.DataFrame(simulation_df), | ||
pd.DataFrame(measurement_df), | ||
on=['observableId', 'simulationConditionId', 'time', 'datasetId'] | ||
) | ||
|
||
# Modify datasetID | ||
df_merged['datasetId'] = df_merged['datasetId'].str.extract(r'^[^_]*_([^_]*)_')[0] | ||
|
||
# Map unique colors to each datasetId | ||
unique_datasets = df_merged['datasetId'].unique() | ||
colors = cm.get_cmap('tab10', len(unique_datasets)) # Using 'tab10' color map | ||
|
||
# Initialize the plot | ||
plt.figure(figsize=(8, 8)) | ||
plt.xscale('log') | ||
plt.yscale('log') | ||
|
||
# Scatter plot with color mapping for each datasetId | ||
for i, dataset in enumerate(unique_datasets): | ||
subset = df_merged[df_merged['datasetId'] == dataset] | ||
plt.scatter(subset['measurement'], subset['simulation'], color=colors(i), label=dataset) | ||
|
||
# Add bisectrix (y=x line) | ||
x_min, x_max = df_merged['measurement'].min(), df_merged['measurement'].max() | ||
plt.plot([x_min, x_max], [x_min, x_max], 'k--') | ||
|
||
# Labels, title, and legend | ||
plt.xlabel("Measurement (log scale)") | ||
plt.ylabel("Simulation (log scale)") | ||
plt.title("Logarithmic Measurement vs Simulation by Dataset") | ||
plt.legend(title="Dataset ID") | ||
|
||
# Show or save the plot | ||
if output_file: | ||
plt.savefig(output_file, dpi=300, bbox_inches='tight') | ||
else: | ||
plt.show() | ||
|
||
# Assuming `simulation_df` and `measurement_df` are predefined dataframes | ||
plot_measurements_vs_simulation(simulation_df, measurement_df) | ||
|
||
# To save the plot instead of showing it | ||
plot_measurements_vs_simulation(simulation_df, measurement_df, output_file="measurements_vs_simulation.png") | ||
|
||
|
||
``` |