-
Notifications
You must be signed in to change notification settings - Fork 6
/
FPGA_norm.py
265 lines (237 loc) · 13.2 KB
/
FPGA_norm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import numpy as np
import pylab as pl
from pydelay import dde23
# define the equations
eqns = {
'x' : '(-x-(1/theta)*y+beta*pow(sin(sc*(16.00000*x(t-0.0067*T)+\
6.00000*x(t-0.0133*T)+\
22.00000*x(t-0.0200*T)+\
25.00000*x(t-0.0267*T)+\
22.00000*x(t-0.0333*T)+\
13.00000*x(t-0.0400*T)+\
7.00000*x(t-0.0467*T)+\
19.00000*x(t-0.0533*T)+\
6.00000*x(t-0.0600*T)+\
25.00000*x(t-0.0667*T)+\
16.00000*x(t-0.0733*T)+\
15.00000*x(t-0.0800*T)+\
4.00000*x(t-0.0867*T)+\
2.00000*x(t-0.0933*T)+\
7.00000*x(t-0.1000*T)+\
22.00000*x(t-0.1067*T)+\
23.00000*x(t-0.1133*T)+\
18.00000*x(t-0.1200*T)+\
19.00000*x(t-0.1267*T)+\
6.00000*x(t-0.1333*T)+\
15.00000*x(t-0.1400*T)+\
21.00000*x(t-0.1467*T)+\
10.00000*x(t-0.1533*T)+\
25.00000*x(t-0.1600*T)+\
2.00000*x(t-0.1667*T)+\
8.00000*x(t-0.1733*T)+\
13.00000*x(t-0.1800*T)+\
2.00000*x(t-0.1867*T)+\
19.00000*x(t-0.1933*T)+\
14.00000*x(t-0.2000*T)+\
14.00000*x(t-0.2067*T)+\
21.00000*x(t-0.2133*T)+\
22.00000*x(t-0.2200*T)+\
20.00000*x(t-0.2267*T)+\
8.00000*x(t-0.2333*T)+\
12.00000*x(t-0.2400*T)+\
19.00000*x(t-0.2467*T)+\
3.00000*x(t-0.2533*T)+\
3.00000*x(t-0.2600*T)+\
7.00000*x(t-0.2667*T)+\
13.00000*x(t-0.2733*T)+\
25.00000*x(t-0.2800*T)+\
18.00000*x(t-0.2867*T)+\
8.00000*x(t-0.2933*T)+\
7.00000*x(t-0.3000*T)+\
22.00000*x(t-0.3067*T)+\
23.00000*x(t-0.3133*T)+\
16.00000*x(t-0.3200*T)+\
7.00000*x(t-0.3267*T)+\
2.00000*x(t-0.3333*T)+\
22.00000*x(t-0.3400*T)+\
15.00000*x(t-0.3467*T)+\
24.00000*x(t-0.3533*T)+\
2.00000*x(t-0.3600*T)+\
15.00000*x(t-0.3667*T)+\
7.00000*x(t-0.3733*T)+\
21.00000*x(t-0.3800*T)+\
5.00000*x(t-0.3867*T)+\
11.00000*x(t-0.3933*T)+\
10.00000*x(t-0.4000*T)+\
21.00000*x(t-0.4067*T)+\
17.00000*x(t-0.4133*T)+\
5.00000*x(t-0.4200*T)+\
8.00000*x(t-0.4267*T)+\
3.00000*x(t-0.4333*T)+\
17.00000*x(t-0.4400*T)+\
15.00000*x(t-0.4467*T)+\
4.00000*x(t-0.4533*T)+\
4.00000*x(t-0.4600*T)+\
12.00000*x(t-0.4667*T)+\
23.00000*x(t-0.4733*T)+\
14.00000*x(t-0.4800*T)+\
1.00000*x(t-0.4867*T)+\
1.00000*x(t-0.4933*T)+\
21.00000*x(t-0.5000*T)+\
12.00000*x(t-0.5067*T)+\
10.00000*x(t-0.5133*T)+\
20.00000*x(t-0.5200*T)+\
9.00000*x(t-0.5267*T)+\
14.00000*x(t-0.5333*T)+\
18.00000*x(t-0.5400*T)+\
22.00000*x(t-0.5467*T)+\
8.00000*x(t-0.5533*T)+\
17.00000*x(t-0.5600*T)+\
25.00000*x(t-0.5667*T)+\
2.00000*x(t-0.5733*T)+\
15.00000*x(t-0.5800*T)+\
11.00000*x(t-0.5867*T)+\
8.00000*x(t-0.5933*T)+\
7.00000*x(t-0.6000*T)+\
19.00000*x(t-0.6067*T)+\
26.00000*x(t-0.6133*T)+\
5.00000*x(t-0.6200*T)+\
20.00000*x(t-0.6267*T)+\
5.00000*x(t-0.6333*T)+\
25.00000*x(t-0.6400*T)+\
21.00000*x(t-0.6467*T)+\
11.00000*x(t-0.6533*T)+\
19.00000*x(t-0.6600*T)+\
13.00000*x(t-0.6667*T)+\
21.00000*x(t-0.6733*T)+\
9.00000*x(t-0.6800*T)+\
2.00000*x(t-0.6867*T)+\
15.00000*x(t-0.6933*T)+\
23.00000*x(t-0.7000*T)+\
5.00000*x(t-0.7067*T)+\
11.00000*x(t-0.7133*T)+\
19.00000*x(t-0.7200*T)+\
1.00000*x(t-0.7267*T)+\
24.00000*x(t-0.7333*T)+\
20.00000*x(t-0.7400*T)+\
14.00000*x(t-0.7467*T)+\
5.00000*x(t-0.7533*T)+\
13.00000*x(t-0.7600*T)+\
13.00000*x(t-0.7667*T)+\
26.00000*x(t-0.7733*T)+\
22.00000*x(t-0.7800*T)+\
25.00000*x(t-0.7867*T)+\
17.00000*x(t-0.7933*T)+\
10.00000*x(t-0.8000*T)+\
24.00000*x(t-0.8067*T)+\
12.00000*x(t-0.8133*T)+\
6.00000*x(t-0.8200*T)+\
10.00000*x(t-0.8267*T)+\
18.00000*x(t-0.8333*T)+\
14.00000*x(t-0.8400*T)+\
19.00000*x(t-0.8467*T)+\
26.00000*x(t-0.8533*T)+\
25.00000*x(t-0.8600*T)+\
14.00000*x(t-0.8667*T)+\
25.00000*x(t-0.8733*T)+\
3.00000*x(t-0.8800*T)+\
1.00000*x(t-0.8867*T)+\
8.00000*x(t-0.8933*T)+\
15.00000*x(t-0.9000*T)+\
14.00000*x(t-0.9067*T)+\
23.00000*x(t-0.9133*T)+\
14.00000*x(t-0.9200*T)+\
11.00000*x(t-0.9267*T)+\
14.00000*x(t-0.9333*T)+\
18.00000*x(t-0.9400*T)+\
0.00000*x(t-0.9467*T)+\
21.00000*x(t-0.9533*T)+\
4.00000*x(t-0.9600*T)+\
12.00000*x(t-0.9667*T)+\
7.00000*x(t-0.9733*T)+\
9.00000*x(t-0.9800*T)+\
17.00000*x(t-0.9867*T)+\
4.00000*x(t-0.9933*T)+\
7.00000*x(t-1.0000*T))+Phi0),2))',
'y' : 'x'
}
#define the parameters, times is in 'ms'
params = {
'tau' : 1.0, # 0.008 ms < tau< 0.10 ms
'beta' : 1.4,
'T' : 0.2*150, # 1.6 ms < T< 130 ms
'Phi0' : 0.25*np.pi,
#~ 'theta' : 1.59e-3/7.958e-6, #theta(s)/tau(s) # 0.8 ms < theta< 1*1000 ms
'theta' : 79.5e-3/7.958e-6, #theta(s)/tau(s) # 0.8 ms < theta< 1*1000 ms
'sc' : 1/2048.03924 #1/72.3924
}
print(params)
tau_real = 7.958e-6 # tau(s)
theta_real = 1.59e-3 # theta(s)
# Initialise the solver
dde = dde23(eqns=eqns, params=params)
#set the simulation parameters
# (solve from t=0 to t=tfinal and limit the maximum step size to dtmax)
tfinal=35000
tcut=30000
dde.set_sim_params(tfinal=tfinal, dtmax=0.5, AbsTol=10**-4, RelTol=10**-2)
# set the history using a python lambda function
histfunc = {
'x': lambda t: -0.01*np.sin(185.0*t),
'y': lambda t: -0.01*np.cos(223.0*t)
}
dde.hist_from_funcs(histfunc, 1000)
# run the simulator
dde.run()
# Make a plot of x(t) vs x(t-tau):
# Sample the solution twice with a stepsize of dt=0.1:
T=params['T']
beta=params['beta']
tau=params['tau']
theta=params['theta']
sol1 = dde.sample((tfinal-tcut)+T, tfinal,0.1)
x1 = sol1['x']
y1 = sol1['y']
t = sol1['t']
# and once between
sol2 = dde.sample((tfinal-tcut), tfinal-T,0.1)
x2 = sol2['x']
# Figures
plot_params = {'axes.labelsize': 18,
'font.size': 20,
'legend.fontsize': 20,
#~ 'title.fontsize': 22,
'xtick.labelsize': 18,
'ytick.labelsize': 18}
pl.rcParams.update(plot_params)
#~ pl.figure(11)
#~ pl.plot(t*tau_real,x1)
#~ pl.axis('tight')
#~ pl.xlabel('$Time$')
#~ pl.ylabel('$x(t)$')
#~ pl.title(r'$\beta=$ %1.1f'
#~ % (beta ) )
f, (ax1, ax2) = pl.subplots(2, 1, sharex=True)
#pl.subplot(211)
ax1.plot(t*tau_real,x1)
#~ pl.xlabel('$t$')
ax1.set_ylabel('$x(t)$')
ax1.set_title(r'$\beta=$ %1.3f, $\theta=$ %1.2f, $\tau=$ %1.2f, T= %1.2f'
% (beta, theta, tau, T ) )
#~ pl.subplot(212)
ax2.plot(t*tau_real,y1)
ax2.set_xlabel('$t$')
ax2.set_ylabel('$y(t)$')
pl.axis('tight')
#pl.subplot(313)
#pl.plot(x2, x1,'.')
#pl.xlabel('$x(t-T)$')
#pl.ylabel('$x(t)$')
#pl.figure(2)
#
#H, xedges, yedges = np.histogram2d(x1, x2, bins=100)
#extent = [xedges[0], xedges[-1], yedges[0], yedges[-1]]
#pl.imshow(H, extent=extent)
#pl.xlabel('$x(t)$')
#pl.ylabel('$x(t-T)$')
pl.show()