-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheducation.R
92 lines (70 loc) · 1.83 KB
/
education.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
## Packages
library(rdd)
library(rdpower)
library(tidyverse)
library(tidymodels)
library(haven)
## Data
cvp <- read_dta("Datasets/CVP.dta")
elec <- read_dta("Datasets/HouseElectionResults.dta")
## Joining Data
dta <- cvp %>%
left_join(elec, by = c("state", "dist", "cong"))
## Basic Plot
dta %>%
filter(dta$cong == 111) %>%
ggplot(aes(x = voteshare, y = cvp_agriculture)) +
geom_point() +
theme_bw()
## Setting Seed
set.seed(123889)
## Saving Percentiles (Candidate Cut-points)
g <- percentile(dta$voteshare)
## Initializing Data Frame
f <- data.frame(1)
## Creates the Candidate (x-c)'s
for (i in 1:length(g)) {
p <- paste0("X_", i)
c <- assign(p, (dta$voteshare - g[i]))
f <- data.frame(c, f)
}
## Drop the needed initialized column
f <- f %>%
select(-X1)
## Testing Equivalencies
q <- dta$voteshare-g[45]
q == f$c.45
## Initializing Variables for local linear regression loop
models <- list()
f <- f %>%
select(-c) %>%
cbind(dta$cvp_agriculture)
variables <- setdiff(names(f), c("row_id"))
## Local Linear Regression Loop
for (var in variables) {
models[[var]] = RDestimate(
as.formula(paste0("dta$cvp_agriculture ~ ", var)),
data = f
)
}
for (var in variables) {
skip_to_next <- FALSE
tryCatch(models[[var]] <- RDestimate(
as.formula(paste0("dta$cvp_agriculture ~ ", var)),
data = f
), error = function(e) { skip_to_next <<- TRUE})
if(skip_to_next) { next }
}
## Testing
selection_criteria("c.43")
## Creating Cuts Name
cuts <- colnames(f)
## Finding Optimal Cut-point
s <- sapply(cuts, selection_criteria, USE.NAMES = TRUE)
s[s== max(s)]
df <- data.frame(s)
ggplot(df, aes(x=s)) +
geom_histogram() +
theme_minimal() +
labs(title="Distribution of Selection Criteria", x = "Selection Criteria", ylab=NULL,
subtitle = "Recovering Simulated Cut-point with No Uncertainity")