Description
Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0? Find all unique triplets in the array which gives the sum of zero.
Note: The solution set must not contain duplicate triplets.
For example, given array S = [-1, 0, 1, 2, -1, -4],
A solution set is:
[
[-1, 0, 1],
[-1, -1, 2]
]
Thinking process
- Sort the array, pick one element and call the twoSum subroutine on the rest of the array
- How to avoid duplicates? (a. HashSet, b. Skip same elements)
public List<List<Integer>> threeSum(int[] nums) {
Arrays.sort(nums);
List<List<Integer>> res = new ArrayList<>();
for(int i=0; i < nums.length; i++){
//skip same elements
if(i > 0 && nums[i] == nums[i-1])
continue;
int target = - nums[i];
int low = i + 1;
int high = nums.length - 1;
while(low < high){
if(nums[low] + nums[high] == target){
res.add(Arrays.asList(nums[i], nums[low], nums[high]));
//skip same elements
while(low < high && nums[low] == nums[low + 1])
low++;
while(low < high && nums[high] == nums[high - 1])
high--;
low++;
high--;
}else if(nums[low] + nums[high] < target)
low++;
else
high--;
}
}
return res;
}
Complexity
- Sorting takes O(nlogn)
- Each twoSum procedure takes O(n), needs to be called n times
- Total complexity is O(n2)