Skip to content

Commit

Permalink
Plotting function for simualtionobject class, new and improve roxygen…
Browse files Browse the repository at this point in the history
… comments for functions, including basic included functions. Move extract() call inside sim_effort() rather than the supplied custom function. Vignette under development.
  • Loading branch information
simonrolph committed Jul 3, 2024
1 parent 030c97d commit 3182e52
Show file tree
Hide file tree
Showing 27 changed files with 798 additions and 100 deletions.
2 changes: 1 addition & 1 deletion DESCRIPTION
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@ Suggests:
rmarkdown,
testthat (>= 3.0.0)
VignetteBuilder: knitr
RoxygenNote: 7.2.3
RoxygenNote: 7.3.2
Imports:
terra,
sf
Expand Down
36 changes: 36 additions & 0 deletions R/SimulationObjectClass.R
Original file line number Diff line number Diff line change
Expand Up @@ -38,3 +38,39 @@ SimulationObject <- function(background, state_env = NULL, state_target_suitabil
hash = hash_sim_obj(tmp)
)
}

setMethod("plot", "SimulationObject", function(x) {
x <- read_sim_obj_rasters(x)

if(!is.null(x@state_env)){
plot(x@state_env,
main = paste("@state_env ",names(x@state_env)))
}

if(!is.null(x@state_target_suitability)){
plot(x@state_target_suitability,
main = paste("@state_target_suitability ",names(x@state_target_suitability)))
}

if(!is.null(x@state_target_realised)){
plot(x@state_target_realised,
main = paste("@state_target_realised ",names(x@state_target_realised)))
}

if(!is.null(x@effort)){
plot(x@background, main="@effort",legend = F,col = "white")
plot(x@effort$geometry,add=T)
}

if(!is.null(x@detect)){
plot(x@background, main="@detect",legend = F,col = "white")
plot(x@detect[x@detect$state_detected>0,c("geometry","state_detected")],col = "blue",add=T,pch=19)
plot(x@detect[x@detect$state_detected==0,c("geometry","state_detected")],col = "red",pch = 4,add=T)
}

if(!is.null(x@report)){
plot(x@background, main="@report",legend = F,col = "white")
plot(x@report[x@report$reported==T,c("geometry")],col = "blue",add=T,pch=19)
plot(x@detect[x@report$reported==F,c("geometry")],col = "red",pch = 4,add=T)
}
})
156 changes: 129 additions & 27 deletions R/basic_functions.R
Original file line number Diff line number Diff line change
@@ -1,3 +1,15 @@
#' Create a Gradient SpatRaster for Environmental State
#'
#' @param simulation_object A SimulationObject containing the background layer.
#' @param from The starting value of the gradient. Default is 0.
#' @param to The ending value of the gradient. Default is 1.
#'
#' @return A SpatRaster representing the gradient environmental state.
#' @examples
#' \dontrun{
#' sim_state <- state_env_gradient(simulation_object, from = 0, to = 1)
#' }
#' @export
state_env_gradient <- function(simulation_object, from = 0, to = 1) {
#create the gradient spatraster
background <- simulation_object@background
Expand All @@ -7,6 +19,17 @@ state_env_gradient <- function(simulation_object, from = 0, to = 1) {
sim_state
}

#' Create a Uniform SpatRaster for Environmental State
#'
#' @param simulation_object A SimulationObject containing the background layer.
#' @param value The value to fill the raster with. Default is 1.
#'
#' @return A SpatRaster representing the uniform environmental state.
#' @examples
#' \dontrun{
#' sim_state <- state_env_uniform(simulation_object, value = 1)
#' }
#' @export
state_env_uniform <- function(simulation_object, value = 1) {
#create the gradient spatraster
background <- simulation_object@background
Expand All @@ -16,7 +39,18 @@ state_env_uniform <- function(simulation_object, value = 1) {
sim_state
}


#' Create a Uniform Suitability SpatRaster for Target State
#'
#' @param simulation_object A SimulationObject containing the background layer.
#' @param value The value to fill the raster with. Default is 0.5.
#' @param n_targets The number of target layers. Default is 1.
#'
#' @return A SpatRaster representing the uniform suitability for target state.
#' @examples
#' \dontrun{
#' sim_state <- state_target_suitability_uniform(simulation_object, value = 0.5, n_targets = 2)
#' }
#' @export
state_target_suitability_uniform <- function(simulation_object,value = 0.5,n_targets=1){
background <- simulation_object@background

Expand All @@ -28,6 +62,18 @@ state_target_suitability_uniform <- function(simulation_object,value = 0.5,n_tar
sim_state
}

#' Create Virtual Species Suitability SpatRaster for Target State
#'
#' @param simulation_object A SimulationObject containing the background and environmental layers.
#' @param n_targets The number of target layers. Default is 1.
#' @param params A list of parameters for generating virtual species. Default is NULL.
#'
#' @return A SimulationObject with updated target suitability layers.
#' @examples
#' \dontrun{
#' sim_object <- state_target_suitability_virtsp(simulation_object, n_targets = 2)
#' }
#' @export
state_target_suitability_virtsp <- function(simulation_object, n_targets = 1, params = NULL) {
simulation_object_original <- simulation_object
simulation_object <- read_sim_obj_rasters(simulation_object)
Expand Down Expand Up @@ -77,7 +123,16 @@ state_target_suitability_virtsp <- function(simulation_object, n_targets = 1, pa
return(simulation_object_original)
}


#' Realize Target Suitability Using Binomial Distribution
#'
#' @param simulation_object A SimulationObject containing the target suitability layers.
#'
#' @return A SpatRaster with realized target states as binary values.
#' @examples
#' \dontrun{
#' binary_state <- state_target_realise_binomial(simulation_object)
#' }
#' @export
state_target_realise_binomial <- function(simulation_object){
state_target <- binary_state_target <- simulation_object@state_target_suitability
for (i in 1:dim(state_target)[3]){
Expand All @@ -92,7 +147,17 @@ state_target_realise_binomial <- function(simulation_object){
binary_state_target
}


#' Realize Target Suitability Using Threshold
#'
#' @param simulation_object A SimulationObject containing the target suitability layers.
#' @param threshold A numeric value specifying the threshold for realization.
#'
#' @return A SpatRaster with realized target states as binary values based on the threshold.
#' @examples
#' \dontrun{
#' binary_state <- state_target_realise_threshold(simulation_object, threshold = 0.5)
#' }
#' @export
state_target_realise_threshold <- function(simulation_object,threshold){
state_target <- binary_state_target <- simulation_object@state_target_suitability
for (i in 1:dim(state_target)[3]){
Expand All @@ -108,14 +173,39 @@ state_target_realise_threshold <- function(simulation_object,threshold){
}



effort_uniform <- function(simulation_object, n_samplers = 1, n_visits = 1, n_sample_units=1, replace = FALSE) {
#' Generate Sampling Effort Points
#'
#' @param simulation_object A SimulationObject containing the target suitability layers.
#' @param n_samplers The number of samplers. Default is 1.
#' @param n_visits The number of visits per sampler. Default is 1.
#' @param n_sample_units The number of sample units per visit. Default is 1.
#' @param replace A logical value indicating whether sampling with replacement is allowed. Default is FALSE.
#' @param prob_raster A SpatRaster providing the probability of sampling each cell. Default is NULL.
#'
#' @return An sf object containing the sampling effort points.
#' @examples
#' \dontrun{
#' effort <- effort_basic(simulation_object, n_samplers = 2, n_visits = 3)
#' }
#' @export
effort_basic <- function(simulation_object, n_samplers = 1, n_visits = 1, n_sample_units=1, replace = FALSE,prob_raster = NULL) {

#which cells are visited
state_target <- simulation_object@state_target_suitability
visited_cells <- rep(sample(terra::cells(state_target), size = n_samplers*n_visits, replace = replace),each = n_sample_units)

# capture data
if (is.null(prob_raster)){
prob <- NULL
} else {
prob <- terra::values(prob_raster)
}
visited_cells <- rep(sample(terra::cells(state_target),
size = n_samplers*n_visits,
replace = replace,
prob = prob
),
each = n_sample_units)

# capture sampling meta data (who, when, etc.)
sim_effort_points <- as.data.frame(terra::xyFromCell(state_target, visited_cells))
sim_effort_points$sampler <- rep(1:n_samplers,each = n_visits*n_sample_units)
sim_effort_points$visit <- rep(1:n_visits,n_samplers,each = n_sample_units)
Expand All @@ -125,22 +215,23 @@ effort_uniform <- function(simulation_object, n_samplers = 1, n_visits = 1, n_sa

effort_sf <- sf::st_as_sf(sim_effort_points, coords = c("x", "y"), crs = terra::crs(state_target))

#get values from env, suitability, realised
extracted_values <- terra::extract(simulation_object@state_env,effort_sf$cell_id)
effort_sf[,names(extracted_values)] <- extracted_values
extracted_values <- terra::extract(simulation_object@state_target_suitability,effort_sf$cell_id)
effort_sf[,paste0("suit_",names(extracted_values))] <- extracted_values
extracted_values <- terra::extract(simulation_object@state_target_realised,effort_sf$cell_id)
effort_sf[,paste0("real_",names(extracted_values))] <- extracted_values

effort_sf

}




detect_equal <- function(simulation_object, prob = 0.5) {
#' Detect Presence/Absence Based on Equal Probability
#'
#' @param simulation_object A SimulationObject containing the realized target states and sampling effort points.
#' @param prob The detection probability. Default is 1.
#'
#' @return A data frame containing the detection results.
#' @examples
#' \dontrun{
#' detections <- detect_equal(simulation_object, prob = 0.8)
#' }
#' @export
detect_equal <- function(simulation_object, prob = 1) {

background <- simulation_object@background
state_env <- simulation_object@state_env
Expand All @@ -164,11 +255,14 @@ detect_equal <- function(simulation_object, prob = 0.5) {
detections$state_realised <- unname(terra::extract(state_target[[i]], effort,ID=F,raw=T))

#detect based probability value provided as argument
detections$detected <- detections$state_realised * (runif(nrow(detections)) < prob)
detections$detection_ability <- runif(nrow(detections)) < prob

#recorded presence/absense
detections$state_detected <- detections$detection_ability * detections$state_realised

#in this basic example all are identified correctly
detections$identified_as <- detections$target
detections$identified_correct <- detections$identified_as==detections$target
#in this basic example all are identified correctly (ignore for now)
# detections$identified_as <- detections$target
# detections$identified_correct <- detections$identified_as==detections$target

detections_all <- rbind(detections_all, detections)
}
Expand All @@ -177,15 +271,23 @@ detect_equal <- function(simulation_object, prob = 0.5) {
detections_all
}


report_equal <- function(simulation_object, prob = 1, platform = "iRecord") {
#' Report Detections Based on Reporting Probability
#'
#' @param simulation_object A SimulationObject containing the detection results.
#' @param prob The reporting probability. Default is 1.
#' @param platform The platform used for reporting. Default is "None".
#'
#' @return A data frame containing the reporting results.
#' @examples
#' \dontrun{
#' reports <- report_equal(simulation_object, prob = 0.8, platform = "Online")
#' }
#' @export
report_equal <- function(simulation_object, prob = 1, platform = "None") {
detect <- simulation_object@detect

reports <- detect
reports$reported <- runif(nrow(reports)) < prob

reports$reported[reports$detected == FALSE] <- FALSE

reports$platform <- platform

reports
Expand Down
41 changes: 28 additions & 13 deletions R/sim_effort.R
Original file line number Diff line number Diff line change
@@ -1,32 +1,47 @@
#' Defines effort using a custom function
#' Defines effort using a built-in function, a custom function, or sf POINTS
#'
#' @param simulation_object a SimulationObject
#' @param fun a function that takes the simulation object and returns a simulation object with data in effort slot
#' @param ... other parameters for the user supplied function fun
#' @return A SimulationObject with a state_target_realised
#' This function applies a user-supplied function to a SimulationObject to define effort.
#'
#' @param simulation_object A SimulationObject containing simulation data.
#' @param fun A function that takes the simulation_object and additional parameters, and returns a modified simulation_object with effort data.
#' @param sf Optional; if provided, skips applying 'fun' and directly uses this Spatial*DataFrame (sf) for effort calculation.
#' @param ... Additional parameters passed to the user-supplied function 'fun'.
#' @return A SimulationObject with updated effort information.
#' @examples
#' \dontrun{
#' sim_effort(simulation_object, fun, ...)
#' }
sim_effort <- function(simulation_object, fun, ...) {
#' @export
sim_effort <- function(simulation_object, fun, sf=NULL, ...) {
simulation_object_original <- simulation_object
simulation_object <- read_sim_obj_rasters(simulation_object)

if(is.character(fun)){
if(!(fun %in% c("uniform"))){
stop("Provided function must be 'uniform'")
if (is.null(sf)){
if(is.character(fun)){
if(!(fun %in% c("basic"))){
stop("Provided function must be 'basic'")
}
fun <- get(paste0("effort_",fun))
}
fun <- get(paste0("effort_",fun))
# apply the function
effort_sf <- fun(simulation_object, ...)
} else {
effort_sf <- sf
}

# apply the function
effort <- fun(simulation_object, ...)
#get values from env, suitability, realised
extracted_values <- terra::extract(simulation_object@state_env,effort_sf)
effort_sf[,names(extracted_values)] <- extracted_values
extracted_values <- terra::extract(simulation_object@state_target_suitability,effort_sf)
effort_sf[,paste0("suit_",names(extracted_values))] <- extracted_values
extracted_values <- terra::extract(simulation_object@state_target_realised,effort_sf)
effort_sf[,paste0("real_",names(extracted_values))] <- extracted_values

# validity checks
fun_args <- as.list(match.call())
simulation_object_original@metadata[["effort"]] <- fun_args[3:length(fun_args)]

simulation_object_original@effort <- effort
simulation_object_original@effort <- effort_sf
simulation_object_original@hash <- hash_sim_obj(simulation_object_original)
simulation_object_original
}
34 changes: 28 additions & 6 deletions R/sim_state_env.R
Original file line number Diff line number Diff line change
@@ -1,14 +1,36 @@
#' The state of the environment
#' Define the state of the environment
#'
#' This function updates the state environment of a given simulation object by
#' either using a provided SpatRaster, a predefined function (`gradient` or `uniform`),
#' or a user-defined function. The updated simulation object with the new state environment
#' and metadata is returned.
#'
#' @param simulation_object An object representing the simulation. The object should contain
#' a `background` slot and a `state_env` slot.
#' @param fun A character string specifying the name of a predefined function (`"gradient"` or `"uniform"`) or a user-defined function.
#' @param filename A character string specifying the filename to save the resultant SpatRaster. If `NULL`, the SpatRaster is not saved to a file.
#' @param spatraster A `SpatRaster` object to be used directly as the state environment. If provided, it overrides the `fun` parameter.
#' @param ... Additional arguments to be passed to the function specified in `fun`.
#'
#' @param simulation_object an R object of class 'SimulationObject' containing all the necessary information for the simulation
#' @param fun either a function to be used, or a name of a provided function
#' @param filename a file name and path to save the spatraster
#' @param spatraster a SpatRaster to be used as the environment
#' @return An updated simulation object with the newly added state of the environment in the correct slot
#'
#' @details
#' - If a `spatraster` is provided, the function checks that its dimensions match
#' those of the simulation object's background.
#' - If `fun` is provided as a character string, it must be either `"gradient"` or `"uniform"`.
#' - If `fun` is provided as a user-defined function, it will be applied to the simulation object.
#' - If `filename` is provided, the resultant SpatRaster is saved, and the filename is returned.
#'
#' @examples
#' \dontrun{
#' sim_state_env(simulation_object, fun = "uniform",value=1)
#' sim_obj <- sim_state_env(sim_obj, fun = "uniform", value = 0.5)
#' sim_obj <- sim_state_env(sim_obj, fun = "gradient", from = 0, to = 1)
#' sim_obj <- sim_state_env(sim_obj, spatraster = my_spatraster)
#' sim_obj <- sim_state_env(sim_obj, fun = my_custom_function)
#' sim_obj <- sim_state_env(sim_obj, fun = "uniform", filename = "output.tif")
#' }
#'
#' @export
sim_state_env <- function(simulation_object, fun= NULL, filename = NULL, spatraster=NULL, ...) {

#load in rasters but create a copy with the original version
Expand Down
Loading

0 comments on commit 3182e52

Please sign in to comment.