-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathperformInference.py
228 lines (163 loc) · 5.99 KB
/
performInference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
#INPUT_STREAM (Since I'm not testing on live video yet)
# INPUT_STREAM=r"C:\Users\LENOVO\Downloads\Power Series Finale- Tariq and Ghost Argue.mp4"
# INPUT_STREAM=r"C:\Users\LENOVO\Downloads\Video\videoplayback.mp4"
#Necessary Imports
from openvino.inference_engine import IECore
import cv2
import os
import numpy as np
import pickle
import threading
from multiprocessing import Process
import firebase_admin
from firebase_admin import firestore
from firebase_admin import credentials
import time
#Detection model architecture
det_model=r"C:\Users\LENOVO\Desktop\Detect&Recognize\intel\face-detection-0202\FP16\face-detection-0202.xml"
det_weights=os.path.splitext(det_model)[0]+'.bin'
#Siamese-recognition model
# recogModel=r"C:\Users\LENOVO\Downloads\siamese_model\siamese_model.xml"
recogModel=r"E:\FINAL-YEAR-PROJECT\siamese_networks\intel-savedModel\faceNetOneshotJune.xml"
recogWeights=os.path.splitext(recogModel)[0]+'.bin'
#Instantiate the plugin
plugin=IECore()
'''
Prepare the detection model
'''
detPlugin=plugin
detNet=detPlugin.read_network(model=det_model,weights=det_weights)
detExecNet=detPlugin.load_network(network=detNet,device_name="MYRIAD")
det_input_blob=list(detNet.input_info.keys())[0]
det_output_blob=next(iter(detNet.outputs))
db,dc,dh,dw=detNet.input_info[det_input_blob].input_data.shape
'''
Prepare the recognition model
'''
recogPlugin=plugin
recogNetwork=recogPlugin.read_network(model=recogModel,weights=recogWeights)
recogExecNet=recogPlugin.load_network(network=recogNetwork,device_name="MYRIAD")
recog_input_blob1=list(recogNetwork.input_info.keys())[0]
recog_input_blob2=list(recogNetwork.input_info.keys())[1]
recog_output_blob=next(iter(recogNetwork.outputs))
b1,c1,h1,w1=recogNetwork.input_info[recog_input_blob1].input_data.shape
#Load up all anchor images-
def load_anchors():
pickle_in=open('anchors.pickle','rb')
return pickle.load(pickle_in)
#Preprocessing: Preprocess the frame for the model
def preprocessing(input_image,height,width):
try:
preprocessed_image=cv2.resize(input_image,(width,height))
preprocessed_image=preprocessed_image.transpose((2,0,1))
preprocessed_image=preprocessed_image.reshape(1,3,height,width)
return preprocessed_image
except:
pass
#Deduct the bus fare from the walletBalance
def deduct_fare(id):
db.collection('facePay').document(id).update({'walletBalance':firestore.Increment(-fare)})
def perform_facerecognition(face):
#Preprocess face to match model requirements
p_face=preprocessing(face/255.0,h1,w1)
for name,values in anchors.items():
p_image=preprocessing(values['face']/255.0,h1,w1)
infer_req=recogExecNet.start_async(request_id=0,inputs={recog_input_blob1:p_face,recog_input_blob2:p_image})
status=recogExecNet.requests[0].wait(-1)
if status==0:
if recogExecNet.requests[0].outputs[recog_output_blob][0][0]>=0.85:
recognizedIdentity[0]=name
if values['walletBalance']>=fare:
positiveTransaction[0]=''.join(['Success',' ',name])
if anchors[name]['state']!=1:
y=threading.Thread(target=deduct_fare,args=(values['id'],))
y.start()
anchors[name]['state']=1
else:
negativeTransaction[0]=''.join([name,' ','your balance is Insufficient'])
def extract_face(image,result,width,height):
for box in result[0][0]:
if box[2]>0.5:
xmin=int(box[3]*width)
ymin=int(box[4]*height)
xmax=int(box[5]*width)
ymax=int(box[6]*height)
face=image[ymin:ymax,xmin:xmax]
x=threading.Thread(target=perform_facerecognition,args=(face,))
x.start()
x.join()
text=recognizedIdentity[0]
poztxt=positiveTransaction[0]
positiveTransaction[0]=''
negtxt=negativeTransaction[0]
negativeTransaction[0]=''
recognizedIdentity[0]=''
cv2.putText(image,text,(xmin,ymin-10),cv2.FONT_HERSHEY_SIMPLEX,0.9,(36,255,12),2)
'''
Put additional text to the screen
'''
cv2.putText(image,
poztxt,
(10, 20),
cv2.FONT_HERSHEY_SIMPLEX, 0.9,
(0,255,255),
2,
cv2.LINE_4)
cv2.putText(image,
negtxt,
(10, 40),
cv2.FONT_HERSHEY_SIMPLEX, 0.9,
(0,255,255),
2,
cv2.LINE_4)
image=cv2.rectangle(image,(xmin,ymin),(xmax,ymax),(0,0,255),1)
return image
#On snapshot callback
def on_snapshot(doc_snapshot,changes,read_time):
for doc in doc_snapshot:
anchors[doc.to_dict()['userName']]['walletBalance']=doc.to_dict()['walletBalance']
callback_done.set()
if __name__=="__main__":
#Firestore stuff
cred=credentials.Certificate("serviceAccountKey.json")
firebase_admin.initialize_app(cred)
db=firestore.client()
#Listen to live changes
callback_done=threading.Event()
#Listen to only documents with activated FacePay
col_query=db.collection('facePay').where('activatedFacePay','==',True)
query_watch=col_query.on_snapshot(on_snapshot)
#fare
fare=30000
#recognized_identity
recognizedIdentity=['']
#positiveTransaction
positiveTransaction=['']
#Negative transaction
negativeTransaction=['']
#Load all anchors
anchors=load_anchors()
#Video Inference:
# cap=cv2.VideoCapture(INPUT_STREAM)
cap=cv2.VideoCapture(0)
while(cap.isOpened()):
flag,frame=cap.read()
if not flag:
break
width=int(cap.get(3))
height=int(cap.get(4))
pimage=preprocessing(frame,dh,dw)
det_infer_request=detExecNet.start_async(request_id=0,inputs={det_input_blob:pimage})
status=detExecNet.requests[0].wait(-1)
if status==0:
result=detExecNet.requests[0].outputs[det_output_blob]
image=extract_face(frame,result,width,height)
cv2.imshow('frame', image)
k=cv2.waitKey(1) & 0xFF
if k==ord('q'):
pickle_out=open('anchors.pickle','wb')
pickle.dump(anchors,pickle_out)
pickle_out.close
break
cap.release()
cv2.destroyAllWindows()