generated from BloomTech-Labs/template-ds
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathhelper.py
166 lines (122 loc) · 4.03 KB
/
helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# function to generate and save music video
import os
from os.path import join
import shutil
import requests
import random
import boto3
from botocore.exceptions import ClientError
import logging
from flask import Response
import moviepy.editor as mpy
from PIL import Image
from config import *
from image_groups import IMAGE_GROUPS
from visualize import song_analysis, generate_images
def choose_classes(im_group):
if im_group == None:
im_group = random.sample(IMAGE_GROUPS.keys(), 1)[0]
if len(IMAGE_GROUPS[im_group]) < 4:
im_classes = IMAGE_GROUPS[im_group]
else:
im_classes = random.sample(IMAGE_GROUPS[im_group], 4)
im_classes.append(random.sample(list(range(1000)), 2))
return im_classes
def check_entry(preview, video_id, resolution, im_group, jitter,
depth, truncation, pitch_sensitivity, tempo_sensitivity,
smooth_factor):
r = requests.get(preview).status_code
vis_url = 'http://artificial-artist.eba-cyfpphb2.us-east-1.elasticbeanstalk.com/visualize'
classes = choose_classes(im_group)
data = {"preview": preview, "video_id": video_id, "resolution": resolution,
"classes": classes, "jitter": jitter, "depth": depth,
"truncation": truncation, "pitch_sensitivity": pitch_sensitivity,
"tempo_sensitivity": tempo_sensitivity, "smooth_factor": smooth_factor}
if r == 200:
try:
requests.post(vis_url, json=data, timeout=3)
except:
pass
return Response('Accepted', status=202, mimetype='application/json')
else:
return Response(f"{str(vis_url)} not found.", status=404,
mimetype='application/json')
def upload_file_to_s3(mp4file, jpgfile, bucket_name=S3_BUCKET, acl="public-read"):
"""
Saves mp4 and jpg of created video to S3 Bucket
inputs:
mp4file: STR; location of mp4
jpgfile: STR; location of jpgfile
bucket_name: STR; S3 bucket name
acl: STR; allows certain security settings for file access
"""
S3_LOCATION = 'https://{}.s3.amazonaws.com/'.format(bucket_name)
s3 = boto3.client(
"s3",
aws_access_key_id=S3_KEY,
aws_secret_access_key=S3_SECRET
)
try:
with open(mp4file, "rb") as f:
s3.upload_fileobj(
f,
bucket_name,
mp4file,
ExtraArgs={
"ACL": acl,
"ContentType": "video/mp4"
}
)
with open(jpgfile, "rb") as f:
s3.upload_fileobj(
f,
bucket_name,
jpgfile,
ExtraArgs={
"ACL": acl,
"ContentType": "image/jpg"
}
)
except ClientError as e:
logging.error(e)
return "error uploading"
return 'Succesfully uploaded files to S3'
def save_video(tmp_folder_path, song, outname, frame_length = 512):
"""
Input:
tmp_folder_path: STR; path of folder containing images for frames
song: STR; location of song
outname: STR; desired name of files
Output:
creates video in mp4 format, and jpg for thumbnail and calls to save
"""
files_path = [os.path.join(tmp_folder_path, x)
for x in os.listdir(tmp_folder_path) if x.endswith('.png')]
files_path.sort(key=lambda f: int(''.join(filter(str.isdigit, f))))
aud = mpy.AudioFileClip(song, fps=44100)
aud.duration = 30
# creates mp4
clip = mpy.ImageSequenceClip(files_path, fps=22050 / frame_length)
clip = clip.set_audio(aud)
clip.write_videofile(outname + ".mp4", audio_codec='aac')
# saves thumbnail
thumbnail = Image.open(files_path[-1])
thumbnail.save(outname + ".jpg")
# cleans temp directory
if os.path.exists(tmp_folder_path):
shutil.rmtree(tmp_folder_path)
return upload_file_to_s3(outname + ".mp4", outname + ".jpg")
def generate_and_save(preview, video_id, resolution, classes, jitter, depth,
truncation, pitch_sensitivity, tempo_sensitivity,
smooth_factor):
song = requests.get(preview)
song_name = f"{video_id}.mp3"
open(song_name, 'wb').write(song.content)
noise_vectors, class_vectors = song_analysis(song_name, classes,
jitter, depth, truncation,
pitch_sensitivity,
tempo_sensitivity,
smooth_factor)
tmp_folder_path = generate_images(video_id, noise_vectors, class_vectors,
resolution,truncation)
return save_video(tmp_folder_path, song_name, video_id)