This repository has been archived by the owner on Mar 17, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 17
/
video_detection.py
288 lines (242 loc) · 9.7 KB
/
video_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
#!/usr/bin/env python
import numpy as np
import cv2
import math
import traceback
def nothing(x):
pass
def apply_sensibility(avg_color, newHSens, newSSens, newVSens, maxSensibility):
"""
Applies sensibility values for each value of HSV, taking into account the maximum sensibility possible.
It analyses the parameters and executes the hand detection accordingly.
Parameters
----------
avg_color : array
The average of HSV values to be detected
newHSens : int
Percentage of sensibility to apply to Hue
newSSens : int
Percentage of sensibility to apply to Saturation
newVSens : int
Percentage of sensibility to apply to Value
maxSensibility : array
The maximum error margin of HSV values to be detected
"""
hSens = (newHSens * maxSensibility[0]) / 100
SSens = (newSSens * maxSensibility[1]) / 100
VSens = (newVSens * maxSensibility[2]) / 100
lower_bound_color = np.array(
[avg_color[0] - hSens, avg_color[1] - SSens, avg_color[2] - VSens])
upper_bound_color = np.array(
[avg_color[0] + hSens, avg_color[1] + SSens, avg_color[2] + VSens])
return np.array([lower_bound_color, upper_bound_color])
def start(avg_color, max_sensibility, video=True, path=None, left=False):
"""
Initializes the detection process.
It analyses the parameters and executes the hand detection accordingly.
Parameters
----------
avg_color : array
The average of HSV values to be detected
max_sensibility : array
The maximum error margin of HSV values to be detected
video : bool, optional
False if single image
True if video stream
path : str, optional
Path for the image to be analysed
left : bool, optional
Set the ROI on the left side of the screen
"""
# change this value to better adapt to environment light (percentage values)
hSensibility = 100
sSensibility = 100
vSensibility = 100
apply_sensibility(avg_color, hSensibility, sSensibility, vSensibility,
max_sensibility)
cv2.namedWindow('Hand Detection')
cv2.createTrackbar('HSensb', 'Hand Detection', hSensibility, 100, nothing)
cv2.createTrackbar('SSensb', 'Hand Detection', sSensibility, 100, nothing)
cv2.createTrackbar('VSensb', 'Hand Detection', vSensibility, 100, nothing)
if path != None:
frame = cv2.imread(path)
hand_detection(frame, lower_bound_color, upper_bound_color, left)
cv2.waitKey(0)
else:
video_capture = cv2.VideoCapture(0)
while True:
try:
_, frame = video_capture.read()
frame = cv2.flip(frame, 1)
# get values from trackbar
newHSens = cv2.getTrackbarPos('HSensb', 'Hand Detection')
newSSens = cv2.getTrackbarPos('SSensb', 'Hand Detection')
newVSens = cv2.getTrackbarPos('VSensb', 'Hand Detection')
# and apply the new sensibility values
lower_bound_color, upper_bound_color = apply_sensibility(
avg_color, newHSens, newSSens, newVSens, max_sensibility)
hand_detection(frame, lower_bound_color, upper_bound_color,
left)
except Exception as e:
print e
pass
if not video:
cv2.waitKey(0)
cv2.destroyAllWindows()
break
key = cv2.waitKey(10)
if key == ord('q'):
video_capture.release()
cv2.destroyAllWindows()
break
def hand_detection(frame, lower_bound_color, upper_bound_color, left):
"""
Initializes the detection process.
It analyses the parameters and executes the hand detection accordingly.
Parameters
----------
frame : array-like
The frame to be analysed
lower_bound_color : array
The min of HSV values to be detected
upper_bound_color : array
The max of HSV values to be detected
left : bool, optional
Set the ROI on the left side of the screen
"""
kernel = np.ones((3, 3), np.uint8)
if left:
roi = frame[100:300, 100:300]
cv2.rectangle(frame, (100, 100), (300, 300), (0, 255, 0), 0)
else:
roi = frame[50:300, 300:550]
cv2.rectangle(frame, (300, 50), (550, 300), (0, 255, 0), 0)
hsv = cv2.cvtColor(roi, cv2.COLOR_BGR2HSV)
binary_mask = cv2.inRange(hsv, lower_bound_color, upper_bound_color)
mask = cv2.dilate(binary_mask, kernel, iterations=3)
mask = cv2.erode(mask, kernel, iterations=3)
mask = cv2.GaussianBlur(mask, (5, 5), 90)
_, contours, hierarchy = cv2.findContours(mask, cv2.RETR_TREE,
cv2.CHAIN_APPROX_SIMPLE)
try:
cnt = max(contours, key=lambda x: cv2.contourArea(x))
l = analyse_defects(cnt, roi)
analyse_contours(frame, cnt, l + 1)
except ValueError:
pass
show_results(binary_mask, mask, frame)
def analyse_defects(cnt, roi):
"""
Calculates how many convexity defects are on the image.
A convexity defect is a area that is inside the convexity hull but does not belong to the object.
Those defects in our case represent the division between fingers.
Parameters
----------
cnt : array-like
Contour of max area on the image, in this case, the contour of the hand
roi : array-like
Region of interest where should be drawn the found convexity defects
"""
epsilon = 0.0005 * cv2.arcLength(cnt, True)
approx = cv2.approxPolyDP(cnt, epsilon, True)
hull = cv2.convexHull(approx, returnPoints=False)
defects = cv2.convexityDefects(approx, hull)
l = 0
if defects is not None:
for i in range(defects.shape[0]):
s, e, f, d = defects[i, 0]
start = tuple(approx[s][0])
end = tuple(approx[e][0])
far = tuple(approx[f][0])
pt = (100, 180)
a = math.sqrt((end[0] - start[0])**2 + (end[1] - start[1])**2)
b = math.sqrt((far[0] - start[0])**2 + (far[1] - start[1])**2)
c = math.sqrt((end[0] - far[0])**2 + (end[1] - far[1])**2)
s = (a + b + c) / 2
ar = math.sqrt(s * (s - a) * (s - b) * (s - c))
d = (2 * ar) / a
angle = math.acos((b**2 + c**2 - a**2) / (2 * b * c)) * 57
if angle <= 90 and d > 30:
l += 1
cv2.circle(roi, far, 3, [255, 0, 0], -1)
cv2.line(roi, start, end, [0, 255, 0], 2)
return l
def analyse_contours(frame, cnt, l):
"""
Writes to the image the signal of the hand.
The hand signals can be the numbers from 0 to 5, the 'ok' signal, and the 'all right' symbol.
The signals is first sorted by the number of convexity defects. Then, if the number of convexity defects is 1, 2, or 3, the area ratio is to be analysed.
Parameters
----------
frame : array-like
The frame to be analysed
cnt : array-like
Contour of max area on the image, in this case, the contour of the hand
l : int
Number of convexity defects
"""
hull = cv2.convexHull(cnt)
areahull = cv2.contourArea(hull)
areacnt = cv2.contourArea(cnt)
arearatio = ((areahull - areacnt) / areacnt) * 100
font = cv2.FONT_HERSHEY_SIMPLEX
if l == 1:
if areacnt < 2000:
cv2.putText(frame, 'Put hand in the box', (0, 50), font, 2,
(0, 0, 255), 3, cv2.LINE_AA)
else:
if arearatio < 12:
cv2.putText(frame, '0', (0, 50), font, 2, (0, 0, 255), 3,
cv2.LINE_AA)
elif arearatio < 17.5:
cv2.putText(frame, 'Fixe', (0, 50), font, 2, (0, 0, 255), 3,
cv2.LINE_AA)
else:
cv2.putText(frame, '1', (0, 50), font, 2, (0, 0, 255), 3,
cv2.LINE_AA)
elif l == 2:
cv2.putText(frame, '2', (0, 50), font, 2, (0, 0, 255), 3, cv2.LINE_AA)
elif l == 3:
if arearatio < 27:
cv2.putText(frame, '3', (0, 50), font, 2, (0, 0, 255), 3,
cv2.LINE_AA)
else:
cv2.putText(frame, 'ok', (0, 50), font, 2, (0, 0, 255), 3,
cv2.LINE_AA)
elif l == 4:
cv2.putText(frame, '4', (0, 50), font, 2, (0, 0, 255), 3, cv2.LINE_AA)
elif l == 5:
cv2.putText(frame, '5', (0, 50), font, 2, (0, 0, 255), 3, cv2.LINE_AA)
elif l == 6:
cv2.putText(frame, 'reposition', (0, 50), font, 2, (0, 0, 255), 3,
cv2.LINE_AA)
else:
cv2.putText(frame, 'reposition', (10, 50), font, 2, (0, 0, 255), 3,
cv2.LINE_AA)
def show_results(binary_mask, mask, frame):
"""
Shows the image with the results on it.
The image is a result of a combination of the image with the result on it, the original captured ROI, and the ROI after optimizations.
Parameters
----------
binary_mask : array-like
ROI as it is captured
mask : array-like
ROI after optimizations
frame : array-like
Frame to be displayed
"""
combine_masks = np.concatenate((binary_mask, mask), axis=0)
height, _, _ = frame.shape
_, width = combine_masks.shape
masks_result = cv2.resize(combine_masks, dsize=(width, height))
masks_result = cv2.cvtColor(masks_result, cv2.COLOR_GRAY2BGR)
result_image = np.concatenate((frame, masks_result), axis=1)
cv2.imshow('Hand Detection', result_image)
def main():
"""Main function of the app"""
lower_color = np.array([0, 50, 120], dtype=np.uint8)
upper_color = np.array([180, 150, 250], dtype=np.uint8)
start(lower_color, upper_color)
if __name__ == '__main__':
main()