The research source code for a Metaheuristic Genetic Algorithm (MetaGA) that solves route inspection arc routing problems min max k chinese postman problem (mmkcpp) and multi depot variants.
This repository uses PyGAD for easy to adopt source code and genetic algorithm parameters for further experimentation and Weights & Biases for experiment tracking and dataset versioning.
Here is a list of 30 random seeds used in my experiments.
8115,3520,8647,9420,3116,6377,6207,4187,3641,8591,3580,8524,2650,2811,9963,7537,3472,3714,8158,7284,6948,6119,5253,5134,7350,2652,9968,3914,6899,4715
Add bridge graph instances
git submodule add https://github.com/BryanDedeur/bridge-graph-instances
Example
python main.py -i benchmarks/bmcv/C05.dat -k 0,0 -s 8115,3520,8647,9420,3116,6377 -j MMMR
It is recommended to use Anaconda to create a isolated environment with the necessary packages versions that support PyGAD since the various dependent libraries (numpy, scipy) .
- Install Anaconda
- Run Anaconda
- Add Python environment version [3.X.X] that supports PyGAD (see pygad latest docs)
- Open Terminal through Anaconda for the Environment
- Add pip packages
pip install Numpy
- for dependencies in pygadpip install PyGAD
- for genetic algorithmpip install wandb
- for database
- Edit vscode python interpreter
CTRL + SHIFT + P
- Type
python interpreter
- Select the conda environment
- [Optional] Edit environment variables to support wandb