Skip to content

BryanPlummer/SSN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ShapeShifter Networks for Neural Parameter Allocation Search

SSN contains a pytorch implementation for our paper. If you find this code useful in your research, please consider citing:

@InProceedings{plummerNPAS2022,
     author={Bryan A. Plummer and Nikoli Dryden and Julius Frost and Torsten Hoefler and Kate Saenko},
     title={Neural Parameter Allocation Search},
     booktitle={International Conference on Learning Representations (ICLR)},
     year={2022}
}

This code was tested using pytorch v1.9.

Training New Models

You can train a model using:

./train_models.sh <NUM GPUS> <DATASET> <SHARE TYPE> <NAME OF EXPERIMENT> <ADDITIONAL ARGUMENTS>
./train_models.sh 1 cifar100 wavg test_wrn_28_10

You can see a listing and description of many parameter settings with:

python main.py --help

Some key arguments would be:

arguments description
--max_params indicates the maximum number of parameters used by a model
--param_groups number of parameter groups to train
--upsample_type parameter upsampling strategy to use
--group_share_type parameter downsampling approach to use when learning parameter groups

Evaluation

You can test a model using:

./test_models.sh <NUM GPUS> <DATASET> <SHARE TYPE> <NAME OF EXPERIMENT> <ADDITIONAL ARGUMENTS>
./test_models.sh 1 cifar100 wavg test_wrn_28_10

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published