Skip to content

The core code of AGCA: An Adaptive Graph Channel Attention Module for Steel Surface Defect Detection

License

Notifications You must be signed in to change notification settings

C1nDeRainBo0M/AGCA

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 

Repository files navigation

AGCA: An Adaptive Graph Channel Attention Module for Steel Surface Defect Detection

This work has been accepted for publication in the IEEE Transactions on Instrumentation and Measurement (https://ieeexplore.ieee.org/document/10050536).

AGCA.py is the pytorch code implementation of the AGCA attention module.

Abstrct

Surface defect detection is an important part of the steel production process. Recently, attention mechanisms have been widely used in steel surface defect detection to ensure product quality. Existing attention modules cannot distinguish the difference between steel surface images and natural images. Therefore, we propose an Adaptive Graph Channel Attention (AGCA) module which introduces graph convolutional theory into channel attention. The AGCA module takes each channel as a feature vertex, and their relationship is represented by an adjacency matrix. We perform non-local operations on features by analyzing graphs constructed in AGCA. The operation significantly improves the feature representation capability. Like other attention modules, AGCA has lightweight and plug-and-play characteristics. It enables the module easily embedded into defect detection networks. The experimental results on various backbone networks and datasets show that AGCA outperforms state-of-the-art methods.

Citation

If you found the study useful for you, please consider citing it.

@ARTICLE{Xiang2023AGCA,  
author  = {Xiang, Xin and Wang, Zenghui and Zhang, Jun and Xia, Yi and Chen, Peng and Wang, Bing},  
journal = {IEEE Transactions on Instrumentation and Measurement},   
title   = {AGCA: An Adaptive Graph Channel Attention Module for Steel Surface Defect Detection},   
year    = {2023},  
volume  = {72},  
number  = {},  
pages   = {1-12},  
doi     = {10.1109/TIM.2023.3248111}}

About

The core code of AGCA: An Adaptive Graph Channel Attention Module for Steel Surface Defect Detection

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages