forked from cage-challenge/CybORG
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathOpenAIGymWrapper.py
113 lines (93 loc) · 4.55 KB
/
OpenAIGymWrapper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import inspect
import numpy as np
from gym import spaces, Env
from typing import Union, List, Optional, Tuple
from prettytable import PrettyTable
from CybORG.Agents.SimpleAgents.BaseAgent import BaseAgent
from CybORG.Agents.Wrappers.BaseWrapper import BaseWrapper
class OpenAIGymWrapper(Env, BaseWrapper):
def __init__(self, env: BaseWrapper, agent_name: str):
super().__init__(env)
self.agent_name = agent_name
self.action_signature = {}
if isinstance(self.get_action_space(self.agent_name), list):
self.action_space = spaces.MultiDiscrete(self.get_action_space(self.agent_name))
else:
assert isinstance(self.get_action_space(self.agent_name), int)
self.action_space = spaces.Discrete(self.get_action_space(self.agent_name))
box_len = len(self.observation_change(agent_name, self.env.reset(self.agent_name).observation))
self.observation_space = spaces.Box(-1.0, 3.0, shape=(box_len,), dtype=np.float32)
self.reward_range = (float('-inf'), float('inf'))
self.metadata = {}
self.action = None
def step(self, action: Union[int, List[int]] = None) -> Tuple[object, float, bool, dict]:
if action is not None:
action = self.possible_actions[action]
self.action = action
result = self.env.step(self.agent_name, action)
result.observation = self.observation_change(self.agent_name, result.observation)
result.action_space = self.action_space_change(result.action_space)
info = vars(result)
return np.array(result.observation, dtype=np.float32), result.reward, result.done, info
@property
def np_random(self):
return self.env.get_attr('np_random')
def reset(self, *, seed: Optional[int] = None, return_info: bool = False, options: Optional[dict] = None):
result = self.env.reset(self.agent_name, seed)
result.action_space = self.action_space_change(result.action_space)
result.observation = self.observation_change(self.agent_name, result.observation)
if return_info:
return np.array(result.observation, dtype=np.float32), {}
else:
return np.array(result.observation, dtype=np.float32)
def render(self, mode='human'):
return self.env.render(mode)
def get_attr(self,attribute:str):
return self.env.get_attr(attribute)
def get_observation(self, agent: str):
observation = self.env.get_observation(agent)
observation = self.observation_change(self.agent_name, observation)
return np.array(observation, dtype=np.float32)
def get_agent_state(self,agent:str):
return self.get_attr('get_agent_state')(agent)
def get_action_space(self,agent):
return self.action_space_change(self.env.get_action_space(agent))
def get_last_action(self,agent):
return self.get_attr('get_last_action')(agent)
def get_ip_map(self):
return self.get_attr('get_ip_map')()
def get_rewards(self):
return self.get_attr('get_rewards')()
def action_space_change(self, action_space: dict) -> int:
assert type(action_space) is dict, \
f"Wrapper required a dictionary action space. " \
f"Please check that the wrappers below return the action space as a dict "
possible_actions = []
temp = {}
params = ['action']
# for action in action_space['action']:
for i, action in enumerate(action_space['action']):
if action not in self.action_signature:
self.action_signature[action] = inspect.signature(action).parameters
param_dict = {}
param_list = [{}]
for p in self.action_signature[action]:
if p == 'priority':
continue
temp[p] = []
if p not in params:
params.append(p)
if len(action_space[p]) == 1:
for p_dict in param_list:
p_dict[p] = list(action_space[p].keys())[0]
else:
new_param_list = []
for p_dict in param_list:
for key, val in action_space[p].items():
p_dict[p] = key
new_param_list.append({key: value for key, value in p_dict.items()})
param_list = new_param_list
for p_dict in param_list:
possible_actions.append(action(**p_dict))
self.possible_actions = possible_actions
return len(possible_actions)