From af01498f614552da2ddf600329490db34459e08e Mon Sep 17 00:00:00 2001 From: Samuel Farrens Date: Thu, 22 Apr 2021 09:37:06 +0200 Subject: [PATCH] Version 1.5.1 patch release (#114) * Add support for tensorflow backend which allows for differentiability (#112) * Added support for tensorflow * Updates to get tests passing * Or --> And * Moving modopt to allow working with tensorflow * Fix issues with wos * Fix all flakes finally! * Update modopt/base/backend.py Co-authored-by: Samuel Farrens * Update modopt/base/backend.py Co-authored-by: Samuel Farrens * Minute updates to codes * Add dynamic module * Fix docu * Fix PEP Co-authored-by: chaithyagr Co-authored-by: Samuel Farrens * Fix 115 (#116) * Fix issues * Add right tests * Fix PEP Co-authored-by: chaithyagr * Minor bug fix, remove elif (#124) Co-authored-by: chaithyagr * Add tests for modopt.base.backend and fix minute bug uncovered (#126) * Minor bug fix, remove elif * Add tests for backend * Fix tests * Add tests * Remove cupy * PEP fixes * Fix PEP * Fix PEP and update * Final PEP * Update setup.cfg Co-authored-by: Samuel Farrens * Update test_base.py Co-authored-by: chaithyagr Co-authored-by: Samuel Farrens * Release cleanup (#128) * updated GPU dependencies * added logo to manifest * updated package version and release date Co-authored-by: Chaithya G R Co-authored-by: chaithyagr --- .github/workflows/ci-build.yml | 1 + MANIFEST.in | 1 + README.md | 1 + docs/source/dependencies.rst | 6 ++ docs/source/index.rst | 4 +- modopt/base/backend.py | 108 +++++++++++++++++++++++---------- modopt/math/matrix.py | 16 ++--- modopt/opt/algorithms.py | 50 ++++++--------- modopt/tests/test_base.py | 54 ++++++++++++++++- modopt/tests/test_opt.py | 64 +++++++++++++++++++ setup.cfg | 5 +- setup.py | 9 +-- 12 files changed, 237 insertions(+), 82 deletions(-) diff --git a/.github/workflows/ci-build.yml b/.github/workflows/ci-build.yml index 2ed4960d..3ffcb6f4 100644 --- a/.github/workflows/ci-build.yml +++ b/.github/workflows/ci-build.yml @@ -53,6 +53,7 @@ jobs: python -m pip install -r develop.txt python -m pip install -r docs/requirements.txt python -m pip install astropy scikit-image scikit-learn + python -m pip install tensorflow>=2.4.1 python -m pip install twine python -m pip install . diff --git a/MANIFEST.in b/MANIFEST.in index 9a2f374e..74db0634 100644 --- a/MANIFEST.in +++ b/MANIFEST.in @@ -3,3 +3,4 @@ include develop.txt include docs/requirements.txt include README.rst include LICENSE.txt +include docs/source/modopt_logo.png diff --git a/README.md b/README.md index aa72d976..0f7501f0 100644 --- a/README.md +++ b/README.md @@ -58,6 +58,7 @@ Note that none of these are required for running on a CPU. * [CuPy](https://cupy.dev/) * [Torch](https://pytorch.org/) +* [TensorFlow](https://www.tensorflow.org/) ## Citation diff --git a/docs/source/dependencies.rst b/docs/source/dependencies.rst index 782807f8..2a513158 100644 --- a/docs/source/dependencies.rst +++ b/docs/source/dependencies.rst @@ -82,6 +82,7 @@ For GPU compliance the following packages can also be installed: * |link-to-cupy| * |link-to-torch| +* |link-to-tf| .. |link-to-cupy| raw:: html @@ -93,6 +94,11 @@ For GPU compliance the following packages can also be installed: Torch +.. |link-to-tf| raw:: html + + TensorFlow + .. note:: Note that none of these are required for running on a CPU. diff --git a/docs/source/index.rst b/docs/source/index.rst index 8262d43d..238aa5b6 100644 --- a/docs/source/index.rst +++ b/docs/source/index.rst @@ -12,8 +12,8 @@ ModOpt Documentation .. include:: toc.rst :Author: Samuel Farrens `(samuel.farrens@cea.fr) `_ -:Version: 1.5.0 -:Release Date: 31/03/2021 +:Version: 1.5.1 +:Release Date: 22/04/2021 :Repository: |link-to-repo| .. |link-to-repo| raw:: html diff --git a/modopt/base/backend.py b/modopt/base/backend.py index 1f5a7a3a..5fbe912f 100644 --- a/modopt/base/backend.py +++ b/modopt/base/backend.py @@ -8,35 +8,73 @@ """ -import warnings from importlib import util import numpy as np +from modopt.interface.errors import warn + try: import torch + from torch.utils.dlpack import from_dlpack as torch_from_dlpack + from torch.utils.dlpack import to_dlpack as torch_to_dlpack + except ImportError: # pragma: no cover import_torch = False else: import_torch = True # Handle the compatibility with variable -gpu_compatibility = { - 'cupy': False, - 'cupy-cudnn': False, +LIBRARIES = { + 'cupy': None, + 'tensorflow': None, + 'numpy': np, } if util.find_spec('cupy') is not None: try: import cupy as cp - gpu_compatibility['cupy'] = True + LIBRARIES['cupy'] = cp + except ImportError: + pass - if util.find_spec('cupy.cuda.cudnn') is not None: - gpu_compatibility['cupy-cudnn'] = True +if util.find_spec('tensorflow') is not None: + try: + from tensorflow.experimental import numpy as tnp + LIBRARIES['tensorflow'] = tnp except ImportError: pass +def get_backend(backend): + """Get backend. + + Returns the backend module for input specified by string + + Parameters + ---------- + backend: str + String holding the backend name. One of `tensorflow`, + `numpy` or `cupy`. + + Returns + ------- + tuple + Returns the module for carrying out calculations and the actual backend + that was reverted towards. If the right libraries are not installed, + the function warns and reverts to `numpy` backend + """ + if backend not in LIBRARIES.keys() or LIBRARIES[backend] is None: + msg = ( + '{0} backend not possible, please ensure that ' + + 'the optional libraries are installed.\n' + + 'Reverting to numpy' + ) + warn(msg.format(backend)) + backend = 'numpy' + return LIBRARIES[backend], backend + + def get_array_module(input_data): """Get Array Module. @@ -54,48 +92,47 @@ def get_array_module(input_data): The numpy or cupy module """ - if gpu_compatibility['cupy']: - return cp.get_array_module(input_data) - + if LIBRARIES['tensorflow'] is not None: + if isinstance(input_data, LIBRARIES['tensorflow'].ndarray): + return LIBRARIES['tensorflow'] + if LIBRARIES['cupy'] is not None: + if isinstance(input_data, LIBRARIES['cupy'].ndarray): + return LIBRARIES['cupy'] return np -def move_to_device(input_data): +def change_backend(input_data, backend='cupy'): """Move data to device. - This method moves data from CPU to GPU if we have the - compatibility to do so. It returns the same data if - it is already on GPU. + This method changes the backend of an array + This can be used to copy data to GPU or to CPU Parameters ---------- input_data : numpy.ndarray or cupy.ndarray Input data array to be moved + backend: str, optional + The backend to use, one among `tensorflow`, `cupy` and + `numpy`. Default is `cupy`. Returns ------- - cupy.ndarray - The CuPy array residing on GPU + backend.ndarray + An ndarray of specified backend """ xp = get_array_module(input_data) - - if xp == cp: + txp, target_backend = get_backend(backend) + if xp == txp: return input_data - - if gpu_compatibility['cupy']: - return cp.array(input_data) - - warnings.warn('Cupy is not installed, cannot move data to GPU') - - return input_data + return txp.array(input_data) def move_to_cpu(input_data): """Move data to CPU. - This method moves data from GPU to CPU.It returns the same data if it is - already on CPU. + This method moves data from GPU to CPU. + It returns the same data if it is already on CPU. Parameters ---------- @@ -107,13 +144,20 @@ def move_to_cpu(input_data): numpy.ndarray The NumPy array residing on CPU + Raises + ------ + ValueError + if the input does not correspond to any array """ xp = get_array_module(input_data) - if xp == np: + if xp == LIBRARIES['numpy']: return input_data - - return input_data.get() + elif xp == LIBRARIES['cupy']: + return input_data.get() + elif xp == LIBRARIES['tensorflow']: + return input_data.data.numpy() + raise ValueError('Cannot identify the array type.') def convert_to_tensor(input_data): @@ -150,7 +194,7 @@ def convert_to_tensor(input_data): if xp == np: return torch.Tensor(input_data) - return torch.utils.dlpack.from_dlpack(input_data.toDlpack()).float() + return torch_from_dlpack(input_data.toDlpack()).float() def convert_to_cupy_array(input_data): @@ -182,6 +226,6 @@ def convert_to_cupy_array(input_data): ) if input_data.is_cuda: - return cp.fromDlpack(torch.utils.dlpack.to_dlpack(input_data)) + return cp.fromDlpack(torch_to_dlpack(input_data)) return input_data.detach().numpy() diff --git a/modopt/math/matrix.py b/modopt/math/matrix.py index cb54cebc..be737f52 100644 --- a/modopt/math/matrix.py +++ b/modopt/math/matrix.py @@ -12,12 +12,7 @@ import numpy as np -from modopt.base.backend import get_array_module - -try: - import cupy as cp -except ImportError: # pragma: no cover - pass +from modopt.base.backend import get_array_module, get_backend def gram_schmidt(matrix, return_opt='orthonormal'): @@ -303,7 +298,7 @@ def __init__( data_shape, data_type=float, auto_run=True, - use_gpu=False, + compute_backend='numpy', verbose=False, ): @@ -311,10 +306,9 @@ def __init__( self._data_shape = data_shape self._data_type = data_type self._verbose = verbose - if use_gpu: - self.xp = cp - else: - self.xp = np + xp, compute_backend = get_backend(compute_backend) + self.xp = xp + self.compute_backend = compute_backend if auto_run: self.get_spec_rad() diff --git a/modopt/opt/algorithms.py b/modopt/opt/algorithms.py index ccd8fe21..125ac84c 100644 --- a/modopt/opt/algorithms.py +++ b/modopt/opt/algorithms.py @@ -54,11 +54,6 @@ from modopt.opt.cost import costObj from modopt.opt.linear import Identity -try: - import cupy as cp -except ImportError: # pragma: no cover - pass - class SetUp(Observable): r"""Algorithm Set-Up. @@ -92,7 +87,7 @@ def __init__( verbose=False, progress=True, step_size=None, - use_gpu=False, + compute_backend='numpy', **dummy_kwargs, ): @@ -123,20 +118,9 @@ def __init__( ) self.add_observer('cv_metrics', observer) - # Check for GPU - if use_gpu: - if backend.gpu_compatibility['cupy']: - self.xp = cp - else: - warn( - 'CuPy is not installed, cannot run on GPU!' - + 'Running optimization on CPU.', - ) - self.xp = np - use_gpu = False - else: - self.xp = np - self.use_gpu = use_gpu + xp, compute_backend = backend.get_backend(compute_backend) + self.xp = xp + self.compute_backend = compute_backend @property def metrics(self): @@ -148,7 +132,9 @@ def metrics(self, metrics): if isinstance(metrics, type(None)): self._metrics = {} - elif not isinstance(metrics, dict): + elif isinstance(metrics, dict): + self._metrics = metrics + else: raise TypeError( 'Metrics must be a dictionary, not {0}.'.format(type(metrics)), ) @@ -184,10 +170,10 @@ def copy_data(self, input_data): Copy of input data """ - if self.use_gpu: - return backend.move_to_device(input_data) - - return self.xp.copy(input_data) + return self.xp.copy(backend.change_backend( + input_data, + self.compute_backend, + )) def _check_input_data(self, input_data): """Check input data type. @@ -205,8 +191,10 @@ def _check_input_data(self, input_data): For invalid input type """ - if not isinstance(input_data, self.xp.ndarray): - raise TypeError('Input data must be a numpy array.') + if not (isinstance(input_data, (self.xp.ndarray, np.ndarray))): + raise TypeError( + 'Input data must be a numpy array or backend array', + ) def _check_param(self, param_val): """Check algorithm parameters. @@ -779,8 +767,8 @@ def _update(self): self._z_new = self._x_new # Update old values for next iteration. - self.xp.copyto(self._x_old, self._x_new) - self.xp.copyto(self._z_old, self._z_new) + self._x_old = self.xp.copy(self._x_new) + self._z_old = self.xp.copy(self._z_new) # Update parameter values for next iteration. self._update_param() @@ -789,7 +777,7 @@ def _update(self): if self._cost_func: self.converge = ( self.any_convergence_flag() - or self._cost_func.get_cost(self._x_new), + or self._cost_func.get_cost(self._x_new) ) def iterate(self, max_iter=150): @@ -1548,7 +1536,7 @@ def _update(self): if self._cost_func: self.converge = ( self.any_convergence_flag() - or self._cost_func.get_cost(self._x_new), + or self._cost_func.get_cost(self._x_new) ) def iterate(self, max_iter=150): diff --git a/modopt/tests/test_base.py b/modopt/tests/test_base.py index 26e1e4ea..873a4506 100644 --- a/modopt/tests/test_base.py +++ b/modopt/tests/test_base.py @@ -9,12 +9,14 @@ """ from builtins import range -from unittest import TestCase +from unittest import TestCase, skipIf import numpy as np import numpy.testing as npt from modopt.base import np_adjust, transform, types +from modopt.base.backend import (LIBRARIES, change_backend, get_array_module, + get_backend) class NPAdjustTestCase(TestCase): @@ -275,3 +277,53 @@ def test_check_npndarray(self): self.data3, dtype=np.integer, ) + + +class TestBackend(TestCase): + """Test the backend codes.""" + + def setUp(self): + """Set test parameter values.""" + self.input = np.array([10, 10]) + + @skipIf(LIBRARIES['tensorflow'] is None, 'tensorflow library not installed') + def test_tf_backend(self): + """Test tensorflow backend.""" + xp, backend = get_backend('tensorflow') + if backend != 'tensorflow' or xp != LIBRARIES['tensorflow']: + raise AssertionError('tensorflow get_backend fails!') + tf_input = change_backend(self.input, 'tensorflow') + if ( + get_array_module(LIBRARIES['tensorflow'].ones(1)) != LIBRARIES['tensorflow'] + or get_array_module(tf_input) != LIBRARIES['tensorflow'] + ): + raise AssertionError('tensorflow backend fails!') + + @skipIf(LIBRARIES['cupy'] is None, 'cupy library not installed') + def test_cp_backend(self): + """Test cupy backend.""" + xp, backend = get_backend('cupy') + if backend != 'cupy' or xp != LIBRARIES['cupy']: + raise AssertionError('cupy get_backend fails!') + cp_input = change_backend(self.input, 'cupy') + if ( + get_array_module(LIBRARIES['cupy'].ones(1)) != LIBRARIES['cupy'] + or get_array_module(cp_input) != LIBRARIES['cupy'] + ): + raise AssertionError('cupy backend fails!') + + def test_np_backend(self): + """Test numpy backend.""" + xp, backend = get_backend('numpy') + if backend != 'numpy' or xp != LIBRARIES['numpy']: + raise AssertionError('numpy get_backend fails!') + np_input = change_backend(self.input, 'numpy') + if ( + get_array_module(LIBRARIES['numpy'].ones(1)) != LIBRARIES['numpy'] + or get_array_module(np_input) != LIBRARIES['numpy'] + ): + raise AssertionError('numpy backend fails!') + + def tearDown(self): + """Tear Down of objects.""" + self.input = None diff --git a/modopt/tests/test_opt.py b/modopt/tests/test_opt.py index b6805006..3c33c948 100644 --- a/modopt/tests/test_opt.py +++ b/modopt/tests/test_opt.py @@ -58,6 +58,17 @@ def setUp(self): reweight_inst = reweight.cwbReweight(self.data3) cost_inst = cost.costObj([grad_inst, prox_inst, prox_dual_inst]) self.setup = algorithms.SetUp() + self.max_iter = 20 + + self.fb_all_iter = algorithms.ForwardBackward( + self.data1, + grad=grad_inst, + prox=prox_inst, + cost=None, + auto_iterate=False, + beta_update=func_identity, + ) + self.fb_all_iter.iterate(self.max_iter) self.fb1 = algorithms.ForwardBackward( self.data1, @@ -110,6 +121,17 @@ def setUp(self): s_greedy=1.1, ) + self.gfb_all_iter = algorithms.GenForwardBackward( + self.data1, + grad=grad_inst, + prox_list=[prox_inst, prox_dual_inst], + cost=None, + auto_iterate=False, + gamma_update=func_identity, + beta_update=func_identity, + ) + self.gfb_all_iter.iterate(self.max_iter) + self.gfb1 = algorithms.GenForwardBackward( self.data1, grad=grad_inst, @@ -133,6 +155,20 @@ def setUp(self): step_size=2, ) + self.condat_all_iter = algorithms.Condat( + self.data1, + self.data2, + grad=grad_inst, + prox=prox_inst, + cost=None, + prox_dual=prox_dual_inst, + sigma_update=func_identity, + tau_update=func_identity, + rho_update=func_identity, + auto_iterate=False, + ) + self.condat_all_iter.iterate(self.max_iter) + self.condat1 = algorithms.Condat( self.data1, self.data2, @@ -166,6 +202,18 @@ def setUp(self): auto_iterate=False, ) + self.pogm_all_iter = algorithms.POGM( + u=self.data1, + x=self.data1, + y=self.data1, + z=self.data1, + grad=grad_inst, + prox=prox_inst, + auto_iterate=False, + cost=None, + ) + self.pogm_all_iter.iterate(self.max_iter) + self.pogm1 = algorithms.POGM( u=self.data1, x=self.data1, @@ -184,13 +232,18 @@ def tearDown(self): self.data1 = None self.data2 = None self.setup = None + self.fb_all_iter = None self.fb1 = None self.fb2 = None + self.gfb_all_iter = None self.gfb1 = None self.gfb2 = None + self.condat_all_iter = None self.condat1 = None self.condat2 = None self.condat3 = None + self.pogm1 = None + self.pogm_all_iter = None self.dummy = None def test_set_up(self): @@ -201,6 +254,17 @@ def test_set_up(self): npt.assert_raises(TypeError, self.setup._check_param_update, 1) + def test_all_iter(self): + """Test if all opt run for all iterations.""" + opts = [ + self.fb_all_iter, + self.gfb_all_iter, + self.condat_all_iter, + self.pogm_all_iter, + ] + for opt in opts: + npt.assert_equal(opt.idx, self.max_iter - 1) + def test_forward_backward(self): """Test forward_backward.""" npt.assert_array_equal( diff --git a/setup.cfg b/setup.cfg index 56a40d12..d2f544f0 100644 --- a/setup.cfg +++ b/setup.cfg @@ -26,7 +26,8 @@ per-file-ignores = #Justification: Needed for keeping package version and current API *__init__.py*: F401,F403,WPS347,WPS410,WPS412 #Todo: Rethink conditional imports - modopt/base/backend.py: WPS229, WPS420 + #Todo: How can we bypass mutable constants? + modopt/base/backend.py: WPS229, WPS420, WPS407 #Todo: Rethink conditional imports modopt/base/observable.py: WPS420,WPS604 #Todo: Check string for log formatting @@ -54,6 +55,8 @@ per-file-ignores = modopt/signal/wavelet.py: S404,S603 #Todo: Clean up tests modopt/tests/*.py: E731,F401,WPS301,WPS420,WPS425,WPS437,WPS604 + #Todo: Import has bad parenthesis + modopt/tests/test_base.py: WPS318,WPS319,E501,WPS301 #WPS Settings max-arguments = 25 max-attributes = 40 diff --git a/setup.py b/setup.py index 92040f6d..841ca1b1 100644 --- a/setup.py +++ b/setup.py @@ -7,7 +7,7 @@ # Set the package release version major = 1 minor = 5 -patch = 0 +patch = 1 # Set the package details name = 'modopt' @@ -29,9 +29,10 @@ os_str = 'Operating System :: {0}' classifiers = ( - [lc_str.format(license)] + [ln_str] + - [py_str.format(ver) for ver in python_versions_supported] + - [os_str.format(ops) for ops in os_platforms_supported] + [lc_str.format(license)] + + [ln_str] + + [py_str.format(ver) for ver in python_versions_supported] + + [os_str.format(ops) for ops in os_platforms_supported] ) # Source package description from README.md