-
Notifications
You must be signed in to change notification settings - Fork 60
/
laghos_solver.hpp
261 lines (230 loc) · 9.09 KB
/
laghos_solver.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
// Copyright (c) 2017, Lawrence Livermore National Security, LLC. Produced at
// the Lawrence Livermore National Laboratory. LLNL-CODE-734707. All Rights
// reserved. See files LICENSE and NOTICE for details.
//
// This file is part of CEED, a collection of benchmarks, miniapps, software
// libraries and APIs for efficient high-order finite element and spectral
// element discretizations for exascale applications. For more information and
// source code availability see http://github.com/ceed.
//
// The CEED research is supported by the Exascale Computing Project 17-SC-20-SC,
// a collaborative effort of two U.S. Department of Energy organizations (Office
// of Science and the National Nuclear Security Administration) responsible for
// the planning and preparation of a capable exascale ecosystem, including
// software, applications, hardware, advanced system engineering and early
// testbed platforms, in support of the nation's exascale computing imperative.
#ifndef MFEM_LAGHOS_SOLVER
#define MFEM_LAGHOS_SOLVER
#include "mfem.hpp"
#include "laghos_assembly.hpp"
#ifdef MFEM_USE_MPI
namespace mfem
{
namespace hydrodynamics
{
/// Visualize the given parallel grid function, using a GLVis server on the
/// specified host and port. Set the visualization window title, and optionally,
/// its geometry.
void VisualizeField(socketstream &sock, const char *vishost, int visport,
ParGridFunction &gf, const char *title,
int x = 0, int y = 0, int w = 400, int h = 400,
bool vec = false);
struct TimingData
{
// Total times for all major computations:
// CG solves (H1 and L2) / force RHS assemblies / quadrature computations.
StopWatch sw_cgH1, sw_cgL2, sw_force, sw_qdata;
// Store the number of dofs of the corresponding local CG
const HYPRE_Int L2dof;
// These accumulate the total processed dofs or quad points:
// #(CG iterations) for the L2 CG solve.
// #quads * #(RK sub steps) for the quadrature data computations.
HYPRE_Int H1iter, L2iter;
HYPRE_Int quad_tstep;
TimingData(const HYPRE_Int l2d) :
L2dof(l2d), H1iter(0), L2iter(0), quad_tstep(0) { }
};
class QUpdate
{
private:
const int dim, vdim, NQ, NE, Q1D;
const bool use_viscosity, use_vorticity;
const double cfl;
TimingData *timer;
const IntegrationRule &ir;
ParFiniteElementSpace &H1, &L2;
const Operator *H1R;
Vector q_dt_est, q_e, e_vec, q_dx, q_dv;
const QuadratureInterpolator *q1,*q2;
const ParGridFunction &gamma_gf;
public:
QUpdate(const int d, const int ne, const int q1d,
const bool visc, const bool vort,
const double cfl, TimingData *t,
const ParGridFunction &gamma_gf,
const IntegrationRule &ir,
ParFiniteElementSpace &h1, ParFiniteElementSpace &l2):
dim(d), vdim(h1.GetVDim()),
NQ(ir.GetNPoints()), NE(ne), Q1D(q1d),
use_viscosity(visc), use_vorticity(vort), cfl(cfl),
timer(t), ir(ir), H1(h1), L2(l2),
H1R(H1.GetElementRestriction(ElementDofOrdering::LEXICOGRAPHIC)),
q_dt_est(NE*NQ),
q_e(NE*NQ),
e_vec(NQ*NE*vdim),
q_dx(NQ*NE*vdim*vdim),
q_dv(NQ*NE*vdim*vdim),
q1(H1.GetQuadratureInterpolator(ir)),
q2(L2.GetQuadratureInterpolator(ir)),
gamma_gf(gamma_gf) { }
void UpdateQuadratureData(const Vector &S, QuadratureData &qdata);
};
// Given a solutions state (x, v, e), this class performs all necessary
// computations to evaluate the new slopes (dx_dt, dv_dt, de_dt).
class LagrangianHydroOperator : public TimeDependentOperator
{
protected:
ParFiniteElementSpace &H1, &L2;
mutable ParFiniteElementSpace H1c;
ParMesh *pmesh;
// FE spaces local and global sizes
const int H1Vsize;
const int H1TVSize;
const HYPRE_Int H1GTVSize;
const int L2Vsize;
const int L2TVSize;
const HYPRE_Int L2GTVSize;
Array<int> block_offsets;
// Reference to the current mesh configuration.
mutable ParGridFunction x_gf;
const Array<int> &ess_tdofs;
const int dim, NE, l2dofs_cnt, h1dofs_cnt, source_type;
const double cfl;
const bool use_viscosity, use_vorticity, p_assembly;
const double cg_rel_tol;
const int cg_max_iter;
const double ftz_tol;
const ParGridFunction &gamma_gf;
// Velocity mass matrix and local inverses of the energy mass matrices. These
// are constant in time, due to the pointwise mass conservation property.
mutable ParBilinearForm Mv;
SparseMatrix Mv_spmat_copy;
DenseTensor Me, Me_inv;
// Integration rule for all assemblies.
const IntegrationRule &ir;
// Data associated with each quadrature point in the mesh.
// These values are recomputed at each time step.
const int Q1D;
mutable QuadratureData qdata;
mutable bool qdata_is_current, forcemat_is_assembled;
// Force matrix that combines the kinematic and thermodynamic spaces. It is
// assembled in each time step and then it is used to compute the final
// right-hand sides for momentum and specific internal energy.
mutable MixedBilinearForm Force;
// Same as above, but done through partial assembly.
ForcePAOperator *ForcePA;
// Mass matrices done through partial assembly:
// velocity (coupled H1 assembly) and energy (local L2 assemblies).
MassPAOperator *VMassPA, *EMassPA;
OperatorJacobiSmoother *VMassPA_Jprec;
// Linear solver for energy.
CGSolver CG_VMass, CG_EMass;
mutable TimingData timer;
mutable QUpdate *qupdate;
mutable Vector X, B, one, rhs, e_rhs;
mutable ParGridFunction rhs_c_gf, dvc_gf;
mutable Array<int> c_tdofs[3];
virtual void ComputeMaterialProperties(int nvalues, const double gamma[],
const double rho[], const double e[],
double p[], double cs[]) const
{
for (int v = 0; v < nvalues; v++)
{
p[v] = (gamma[v] - 1.0) * rho[v] * e[v];
cs[v] = sqrt(gamma[v] * (gamma[v]-1.0) * e[v]);
}
}
void UpdateQuadratureData(const Vector &S) const;
void AssembleForceMatrix() const;
public:
LagrangianHydroOperator(const int size,
ParFiniteElementSpace &h1_fes,
ParFiniteElementSpace &l2_fes,
const Array<int> &ess_tdofs,
Coefficient &rho0_coeff,
ParGridFunction &rho0_gf,
ParGridFunction &gamma_gf,
const int source,
const double cfl,
const bool visc, const bool vort, const bool pa,
const double cgt, const int cgiter, double ftz_tol,
const int order_q);
~LagrangianHydroOperator();
// Solve for dx_dt, dv_dt and de_dt.
virtual void Mult(const Vector &S, Vector &dS_dt) const;
virtual MemoryClass GetMemoryClass() const
{ return Device::GetMemoryClass(); }
void SolveVelocity(const Vector &S, Vector &dS_dt) const;
void SolveEnergy(const Vector &S, const Vector &v, Vector &dS_dt) const;
void UpdateMesh(const Vector &S) const;
// Calls UpdateQuadratureData to compute the new qdata.dt_estimate.
double GetTimeStepEstimate(const Vector &S) const;
void ResetTimeStepEstimate() const;
void ResetQuadratureData() const { qdata_is_current = false; }
// The density values, which are stored only at some quadrature points,
// are projected as a ParGridFunction.
void ComputeDensity(ParGridFunction &rho) const;
double InternalEnergy(const ParGridFunction &e) const;
double KineticEnergy(const ParGridFunction &v) const;
int GetH1VSize() const { return H1.GetVSize(); }
const Array<int> &GetBlockOffsets() const { return block_offsets; }
void PrintTimingData(bool IamRoot, int steps, const bool fom) const;
};
// TaylorCoefficient used in the 2D Taylor-Green problem.
class TaylorCoefficient : public Coefficient
{
public:
virtual double Eval(ElementTransformation &T, const IntegrationPoint &ip)
{
Vector x(2);
T.Transform(ip, x);
return 3.0 / 8.0 * M_PI * ( cos(3.0*M_PI*x(0)) * cos(M_PI*x(1)) -
cos(M_PI*x(0)) * cos(3.0*M_PI*x(1)) );
}
};
// Acceleration source coefficient used in the 2D Rayleigh-Taylor problem.
class RTCoefficient : public VectorCoefficient
{
public:
RTCoefficient(int dim) : VectorCoefficient(dim) { }
using VectorCoefficient::Eval;
virtual void Eval(Vector &V, ElementTransformation &T,
const IntegrationPoint &ip)
{
V = 0.0; V(1) = -1.0;
}
};
} // namespace hydrodynamics
class HydroODESolver : public ODESolver
{
protected:
hydrodynamics::LagrangianHydroOperator *hydro_oper;
public:
HydroODESolver() : hydro_oper(NULL) { }
virtual void Init(TimeDependentOperator&);
virtual void Step(Vector&, double&, double&)
{ MFEM_ABORT("Time stepping is undefined."); }
};
class RK2AvgSolver : public HydroODESolver
{
protected:
Vector V;
BlockVector dS_dt, S0;
public:
RK2AvgSolver() { }
virtual void Init(TimeDependentOperator &_f);
virtual void Step(Vector &S, double &t, double &dt);
};
} // namespace mfem
#endif // MFEM_USE_MPI
#endif // MFEM_LAGHOS