forked from subhankar01/Covid-Chestxray-lambda-fuzzy
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
599 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,216 @@ | ||
{ | ||
"nbformat": 4, | ||
"nbformat_minor": 0, | ||
"metadata": { | ||
"colab": { | ||
"name": "driver.ipynb", | ||
"provenance": [] | ||
}, | ||
"kernelspec": { | ||
"name": "python3", | ||
"display_name": "Python 3" | ||
}, | ||
"language_info": { | ||
"name": "python" | ||
} | ||
}, | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"colab": { | ||
"base_uri": "https://localhost:8080/" | ||
}, | ||
"id": "iKYmsVyQifJ0", | ||
"outputId": "dd5d7e6f-5534-4e45-a8d1-442623b5c2ad" | ||
}, | ||
"source": [ | ||
"!pip install pyitlib" | ||
], | ||
"execution_count": 17, | ||
"outputs": [ | ||
{ | ||
"output_type": "stream", | ||
"text": [ | ||
"Requirement already satisfied: pyitlib in /usr/local/lib/python3.7/dist-packages (0.2.2)\n", | ||
"Requirement already satisfied: pandas>=0.20.2numpy>=1.9.2 in /usr/local/lib/python3.7/dist-packages (from pyitlib) (1.1.5)\n", | ||
"Requirement already satisfied: scikit-learn>=0.16.0 in /usr/local/lib/python3.7/dist-packages (from pyitlib) (0.22.2.post1)\n", | ||
"Requirement already satisfied: future>=0.16.0 in /usr/local/lib/python3.7/dist-packages (from pyitlib) (0.16.0)\n", | ||
"Requirement already satisfied: scipy>=1.0.1 in /usr/local/lib/python3.7/dist-packages (from pyitlib) (1.4.1)\n", | ||
"Requirement already satisfied: numpy>=1.15.4 in /usr/local/lib/python3.7/dist-packages (from pandas>=0.20.2numpy>=1.9.2->pyitlib) (1.19.5)\n", | ||
"Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.7/dist-packages (from pandas>=0.20.2numpy>=1.9.2->pyitlib) (2.8.1)\n", | ||
"Requirement already satisfied: pytz>=2017.2 in /usr/local/lib/python3.7/dist-packages (from pandas>=0.20.2numpy>=1.9.2->pyitlib) (2018.9)\n", | ||
"Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.7/dist-packages (from python-dateutil>=2.7.3->pandas>=0.20.2numpy>=1.9.2->pyitlib) (1.15.0)\n", | ||
"Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.7/dist-packages (from scikit-learn>=0.16.0->pyitlib) (1.0.1)\n" | ||
], | ||
"name": "stdout" | ||
} | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "LunZbhmzksAX" | ||
}, | ||
"source": [ | ||
"from lambda_fuzzy_script3 import *" | ||
], | ||
"execution_count": 39, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "HzqXM3c8iiCP" | ||
}, | ||
"source": [ | ||
"df = pd.read_csv(r'/content/JBHI_val_predmatrix.csv')" | ||
], | ||
"execution_count": 40, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "yuapuz_uixLe" | ||
}, | ||
"source": [ | ||
"predict = df[['vgg16', 'xcep', 'incep']]\n", | ||
"y_data = df['True Label']" | ||
], | ||
"execution_count": 41, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "oFBSW5NLix-N" | ||
}, | ||
"source": [ | ||
"pred_mat = predict.values.tolist()\n", | ||
"Y = y_data.values.tolist()" | ||
], | ||
"execution_count": 42, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "AjF4MtI4jFNk" | ||
}, | ||
"source": [ | ||
"df_1 = pd.read_csv(r'/content/JBHI_test_confidencematrix.csv')" | ||
], | ||
"execution_count": 43, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "w2X_7qlMjG4j" | ||
}, | ||
"source": [ | ||
"class_0 = df_1[['vgg16_class0','xcep_class0', 'incep_class0']]\n", | ||
"class_1 = df_1[['vgg16_class1', 'xcep_class1', 'incep_class1']]\n", | ||
"class_2 = df_1[['vgg16_class2', 'xcep_class2', 'incep_class2']]" | ||
], | ||
"execution_count": 44, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "oNESsPPUjLlN" | ||
}, | ||
"source": [ | ||
"class_0 = class_0.values.tolist()\n", | ||
"class_1 = class_1.values.tolist()\n", | ||
"class_2 = class_2.values.tolist()" | ||
], | ||
"execution_count": 45, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "suH4Sc3ji5sS" | ||
}, | ||
"source": [ | ||
"val = [.9498, .9674, .9649]\n", | ||
"w = wt1(val)\n", | ||
"shapley_value_list = shapley_calculation(pred_mat=pred_mat, w=w, Y=Y)\n", | ||
"Subset_list=subset_list()\n", | ||
"list_mu = Cal_lambda_fuzzy(shapley_value_list=shapley_value_list, Subset_list=Subset_list)\n", | ||
"fa_cl0 = class_0_pred(class_0=class_0,list_mu=list_mu, Subset_list=Subset_list)\n", | ||
"fa_cl1 = class_1_pred(class_1=class_1,list_mu=list_mu, Subset_list=Subset_list)\n", | ||
"fa_cl2 = class_2_pred(class_2=class_2,list_mu=list_mu, Subset_list=Subset_list)\n", | ||
"result1 = cal_result(fa_cl0, fa_cl1, fa_cl2)\n", | ||
"print(result1)" | ||
], | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "zRI8lK-4i6RM" | ||
}, | ||
"source": [ | ||
"val = [.9498, .9674, .9649]\n", | ||
"w = wt2(val)\n", | ||
"shapley_value_list = shapley_calculation(pred_mat=pred_mat, w=w, Y=Y)\n", | ||
"Subset_list=subset_list()\n", | ||
"list_mu = Cal_lambda_fuzzy(shapley_value_list=shapley_value_list, Subset_list=Subset_list)\n", | ||
"fa_cl0 = class_0_pred(class_0=class_0,list_mu=list_mu, Subset_list=Subset_list)\n", | ||
"fa_cl1 = class_1_pred(class_1=class_1,list_mu=list_mu, Subset_list=Subset_list)\n", | ||
"fa_cl2 = class_2_pred(class_2=class_2,list_mu=list_mu, Subset_list=Subset_list)\n", | ||
"result2 = cal_result(fa_cl0, fa_cl1, fa_cl2)\n", | ||
"print(result2)" | ||
], | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "SfZzGA5pjAMJ" | ||
}, | ||
"source": [ | ||
"val = [.9498, .9674, .9649]\n", | ||
"w = wt3(val)\n", | ||
"shapley_value_list = shapley_calculation(pred_mat=pred_mat, w=w, Y=Y)\n", | ||
"Subset_list=subset_list()\n", | ||
"list_mu = Cal_lambda_fuzzy(shapley_value_list=shapley_value_list, Subset_list=Subset_list)\n", | ||
"fa_cl0 = class_0_pred(class_0=class_0,list_mu=list_mu, Subset_list=Subset_list)\n", | ||
"fa_cl1 = class_1_pred(class_1=class_1,list_mu=list_mu, Subset_list=Subset_list)\n", | ||
"fa_cl2 = class_2_pred(class_2=class_2,list_mu=list_mu, Subset_list=Subset_list)\n", | ||
"result3 = cal_result(fa_cl0, fa_cl1, fa_cl2)\n", | ||
"print(result3)" | ||
], | ||
"execution_count": null, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "xz7NHykZySDj" | ||
}, | ||
"source": [ | ||
"result = majority_aggregation(result1, result2, result3)" | ||
], | ||
"execution_count": 49, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "0M4hMH8lyf51" | ||
}, | ||
"source": [ | ||
"print(result)" | ||
], | ||
"execution_count": null, | ||
"outputs": [] | ||
} | ||
] | ||
} |
Oops, something went wrong.