-
Notifications
You must be signed in to change notification settings - Fork 89
/
eval_mitoses.py
174 lines (148 loc) · 7.28 KB
/
eval_mitoses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
"""Evaluation - mitosis detection"""
import argparse
import os
import numpy as np
import tensorflow as tf
from train_mitoses import create_dataset, compute_data_loss, compute_metrics, marginalize
def evaluate(patches_path, patch_size, batch_size, model_path, model_name, prob_threshold,
marginalization, threads, prefetch_batches, log_interval):
"""Evaluate a model.
Args:
patches_path: String path to the generated image patches. This
should contain folders for each class.
patch_size: Integer length to which the square patches will be
resized.
batch_size: Integer batch size.
model_path: String path to a Keras Model object.
model_name: String indicating the model to use.
prob_threshold: Decimal threshold over which the patch is predicted as a
positive case.
marginalization: Boolean for whether or not to use noise
marginalization when evaluating the validation set. If True, then
each image in the validation set will be expanded to a batch of
augmented versions of that image, and predicted probabilities for
each batch will be averaged to yield a single noise-marginalized
prediction for each image. Note: if this is True, then
`val_batch_size` must be divisible by 4, or equal to 1 for a
special debugging case of no augmentation.
threads: Integer number of threads for dataset buffering.
prefetch_batches: Integer number of batches to prefetch.
log_interval: Integer number of steps between logging during
training.
Returns:
F1 score, ppv (precision), sensitivity (recall), accuracy, and loss
values on the dataset.
"""
# create session, force tf.Keras to use it
config = tf.ConfigProto(allow_soft_placement=True)#, log_device_placement=True)
sess = tf.Session(config=config)
tf.keras.backend.set_session(sess)
# data
with tf.name_scope("data"):
dataset = create_dataset(patches_path, model_name, patch_size, batch_size, False, False,
marginalization, False, threads, prefetch_batches, None)
iterator = tf.data.Iterator.from_structure(dataset.output_types, dataset.output_shapes)
data_init_op = iterator.make_initializer(dataset)
images, labels, filenames = iterator.get_next()
input_shape = (patch_size, patch_size, 3)
# models
with tf.name_scope("model"):
# load model
model = tf.keras.models.load_model(model_path, compile=False)
# compute logits and predictions, possibly with marginalization
# NOTE: tf prefers to feed logits into a combined sigmoid and logistic loss function for
# numerical stability
if marginalization:
logits = marginalize(model(images)) # will marginalize at test time
labels = labels[0:1]
else:
logits = model(images)
probs = tf.nn.sigmoid(logits, name="probs")
preds = probs > prob_threshold
# loss
with tf.name_scope("loss"):
# NOTE: for now, we ignore regularization. loss at evaluation time is fairly useless anyway...
data_loss = compute_data_loss(labels, logits)
loss = data_loss
# metrics
with tf.name_scope("metrics"):
num_thresholds = 11
mean_loss, acc, ppv, sens, f1, pr, f1s, metric_update_ops, metric_reset_ops = compute_metrics(
loss, labels, preds, probs, num_thresholds)
f1_max = tf.reduce_max(f1s)
thresh_max = pr.thresholds[tf.argmax(f1s)]
# initialize stuff
sess.run([data_init_op, metric_reset_ops])
# evaluation
vi = 0 # validation step
while True:
try:
# evaluate & update metrics
sess.run(metric_update_ops, feed_dict={tf.keras.backend.learning_phase(): 0})
if log_interval > 0 and vi % log_interval == 0:
metrics = sess.run([f1, ppv, sens, acc, mean_loss, labels, probs])
f1_val, ppv_val, sens_val, acc_val, mean_loss_val, labels_val, probs_val = metrics
print("val", vi, f1_val, ppv_val, sens_val, acc_val, mean_loss_val)
print(len(labels_val), labels_val)
print(len(probs_val), probs_val)
vi += 1
except tf.errors.OutOfRangeError:
break
# log average validation metrics
f1_val, f1_max_val, thresh_max_val, ppv_val, sens_val, acc_val, mean_loss_val, labels_val = sess.run(
[f1, f1_max, thresh_max, ppv, sens, acc, mean_loss, labels])
print(f"f1 (@ {prob_threshold}): {f1_val}")
print(f"f1_max (@ {thresh_max_val}): {f1_max_val}")
print(f"ppv: {ppv_val}")
print(f"sens: {sens_val}")
print(f"acc: {acc_val}")
print(f"loss: {mean_loss_val}")
return f1_val, ppv_val, sens_val, acc_val, mean_loss_val
def main(args=None):
"""Command line interface for this script. Can optionally pass in a
list of strings to simulate command line usage.
"""
# parse args
parser = argparse.ArgumentParser()
parser.add_argument("--model_name", required=True,
choices=['logreg', 'vgg', 'vgg_new', 'vgg19', 'resnet', 'resnet_new', 'resnet_custom'],
help="name of the model, which is used for determining the correct normalization")
parser.add_argument("--model_path", required=True,
help="path to a Keras model to use for false-positive oversampling; note: this model should "\
"produce logit values, rather than probability values")
parser.add_argument("--patches_path", required=True,
help="path to the generated image patches containing `mitosis` & `normal` folders")
parser.add_argument("--patch_size", type=int, default=64,
help="integer length to which the square patches will be resized (default: %(default)s)")
parser.add_argument("--batch_size", type=int, default=32,
help="batch size (default: %(default)s)")
parser.add_argument("--prob_threshold", type=float, default=0.5,
help="threshold over which the patch is predicted as a positive case (default: %(default)s)")
parser.add_argument("--marginalize", default=False, action="store_true",
help="use noise marginalization when evaluating the validation set. if this is set, then "\
"the validation batch_size must be divisible by 4, or equal to 1 for no augmentation "\
"(default: %(default)s)")
parser.add_argument("--threads", type=int, default=5,
help="number of threads for dataset buffering (default: %(default)s)")
# TODO: update this to default to `None` to take advantage of auto prefetch buffer size tuning
# https://github.com/tensorflow/tensorflow/commit/d355f4e2644b68ea643f573c564936ec23b93787
parser.add_argument("--prefetch_batches", type=int, default=100,
help="number of batches to prefetch (default: %(default)s)")
parser.add_argument("--log_interval", type=int, default=100,
help="number of steps between logging during training (default: %(default)s)")
args = parser.parse_args(args)
# sanity check to check for keras bug
#from keras.layers import Input
#from train_mitoses import create_model
#input_shape = (args.patch_size, args.patch_size, 3)
#images = Input(input_shape)
#model, model_base = create_model(args.model_name, input_shape, images)
#model.load_weights(args.model_path)
# eval!
evaluate(
patches_path=args.patches_path, patch_size=args.patch_size, batch_size=args.batch_size,
model_path=args.model_path, model_name=args.model_name, prob_threshold=args.prob_threshold,
marginalization=args.marginalize, threads=args.threads,
prefetch_batches=args.prefetch_batches, log_interval=args.log_interval)
if __name__ == "__main__":
main()