-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
00885c1
commit d28fe19
Showing
1 changed file
with
124 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,124 @@ | ||
from cryptomite.dodis import Dodis | ||
from cryptomite.toeplitz import Toeplitz | ||
from cryptomite.utils import von_neumann | ||
from cryptomite.trevisan import Trevisan | ||
from numpy.random import randint | ||
import numpy as np | ||
|
||
from time import time | ||
|
||
import pandas as pd | ||
|
||
|
||
cache1 = dict() | ||
cache2 = dict() | ||
|
||
N_REPEATS = 5 | ||
|
||
seed_caches = [dict() for _ in range(N_REPEATS)] | ||
cache3 = dict() | ||
def get_random(cache, n): | ||
if n not in cache: | ||
cache[n] = randint(0, 2, size=n) | ||
|
||
return cache[n] | ||
|
||
# compare with naive | ||
|
||
inp_lens = [x * 10 ** n for x in [10, 18, 32, 56] for n in range(1, 10)] | ||
# inp_lens = [10 ** 8] | ||
names = ["Extractor", "Input Length", "Ratio"] | ||
#ratios = (0.5, 0.75) | ||
ratios = [0.5] | ||
columns = ["Wait (s)"] | ||
indices = [] | ||
rows = [] | ||
|
||
# Dodis | ||
print("\nDodis: ", end="", flush=True) | ||
for inp_len in inp_lens: | ||
inp1 = get_random(cache1, inp_len) | ||
inp2 = get_random(cache2, inp_len) | ||
|
||
for ratio in ratios: | ||
waits = [] | ||
for i in range(N_REPEATS): | ||
inp2 = get_random(seed_caches[i], inp_len) | ||
out_len = int(inp_len * ratio) | ||
ext = Dodis(inp_len, out_len) | ||
start = time() | ||
ext.extract(inp1, inp2) | ||
wait = time() - start | ||
waits.append(wait) | ||
print(".", end="", flush=True) | ||
print("|", end="", flush=True) | ||
rows.append(sum(waits) / len(waits)) | ||
indices.append(('Dodis', inp_len, ratio)) | ||
|
||
# VN | ||
print("\nVN: ", end="", flush=True) | ||
for inp_len in inp_lens: | ||
waits = [] | ||
for i in range(N_REPEATS): | ||
inp1 = get_random(seed_caches[i], inp_len) | ||
start = time() | ||
von_neumann(inp1) | ||
wait = time() - start | ||
waits.append(wait) | ||
print(".", end="", flush=True) | ||
print("|", end="", flush=True) | ||
rows.append(sum(waits) / len(waits)) | ||
indices.append(('Von Neumann', inp_len, np.nan)) | ||
|
||
# Toeplitz | ||
print("\nToeplitz", end="", flush=True) | ||
for inp_len in inp_lens: | ||
inp1 = get_random(cache1, inp_len) | ||
|
||
for ratio in ratios: | ||
out_len = int(inp_len * ratio) | ||
waits = [] | ||
for i in range(N_REPEATS): | ||
seed = get_random(seed_caches[i], inp_len + out_len - 1) | ||
ext = Toeplitz(inp_len, out_len) | ||
start = time() | ||
ext.extract(inp1, seed) | ||
wait = time() - start | ||
waits.append(wait) | ||
print(".", end="", flush=True) | ||
print("|", end="", flush=True) | ||
rows.append(sum(waits) / len(waits)) | ||
indices.append(('Toeplitz', inp_len, ratio)) | ||
|
||
# Trevisan | ||
print("\nTrevisan: ", end="", flush=True) | ||
for inp_len in inp_lens: | ||
if inp_len > 10000: | ||
continue | ||
inp1 = get_random(cache1, inp_len) | ||
|
||
for ratio in ratios: | ||
min_ent = int(inp_len * ratio) | ||
ext = Trevisan(inp_len, min_ent, 2 ** -20) | ||
seed_length = ext.ext.get_seed_length() | ||
waits = [] | ||
for i in range(N_REPEATS): | ||
seed = get_random(seed_caches[i], seed_length) | ||
start = time() | ||
ext.extract(inp1, seed) | ||
wait = time() - start | ||
waits.append(wait) | ||
print(".", end="", flush=True) | ||
rows.append(sum(waits) / len(waits)) | ||
indices.append(('Trevisan', inp_len, ratio)) | ||
print("") | ||
|
||
index = pd.MultiIndex.from_tuples(indices, names=names) | ||
|
||
df = pd.DataFrame(rows, index=index, columns=columns) | ||
|
||
print(df) | ||
|
||
ndf = df.copy().reset_index() | ||
ndf.loc[ndf["Extractor"] == "Von Neumann", "Ratio"] = 0.5 | ||
ndf["Rate"] = ndf["Input Length"] * ndf["Ratio"] / ndf["Wait (s)"] |