-
Notifications
You must be signed in to change notification settings - Fork 1
/
main.py
204 lines (160 loc) · 7.03 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import os
import sys
import argparse
import numpy as np
import pdb
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.nn.functional as F
from dataset_utils import build_dataset, get_mask
from model import CPGNN
from util import edge_index_to_sparse_tensor, Logger, mymkdir, nowdt, set_seed, get_acc
@torch.no_grad()
def test(model, raw_adj, normed_adj, x, y, y_onehot, train_mask, val_mask, test_mask, last_logits):
model.eval()
accs = []
with torch.no_grad():
logits, node_vec, first_adj = model.forward_one(train_mask)
# first_adj = cur_normed_adj
last_logits = logits.detach()
for _ in range(args.max_iter):
logits, node_vec = model.forward_two(node_vec, last_logits, train_mask, first_adj)
pred = logits
accs = get_acc(pred, y, train_mask, val_mask, test_mask)
return accs
def train(dataset, train_mask, val_mask, test_mask, args):
model = CPGNN(dataset, args).cuda()
weight_decay_params = []
no_weight_decay_params = []
for name, param in model.named_parameters():
if param.requires_grad and name != 'H':
weight_decay_params.append(param)
if param.requires_grad and name == 'H':
no_weight_decay_params.append(param)
assert len(no_weight_decay_params) == 1 and len(weight_decay_params) > 0
optimizer = torch.optim.Adam([
dict(params=weight_decay_params, weight_decay=5e-4),
dict(params=no_weight_decay_params, weight_decay=0.)
], lr=args.lr)
x = dataset['features']
normed_adj = dataset['normed_adj']
raw_adj = dataset['raw_adj']
y = dataset['labels']
y_onehot = F.one_hot(y)
best_val_acc = 0
best_val_epoch = -1
choosed_test_acc = 0
print(f'Pre-train for {args.epoch_pretrain} epochs')
for epoch in tqdm(range(args.epoch_pretrain)):
model.train()
pred = model.forward_pretrain(normed_adj, x)
loss = F.cross_entropy(pred[train_mask], y[train_mask])
optimizer.zero_grad()
loss.backward()
optimizer.step()
if args.only_pretrain:
model.eval()
with torch.no_grad():
pred = model.forward_pretrain(normed_adj, x)
accs = get_acc(pred, y, train_mask, val_mask, test_mask)
if accs[1] > best_val_acc:
best_val_acc = accs[1]
choosed_test_acc = accs[2]
improved = '*'
best_val_epoch = epoch
else:
improved = ''
print(f'Epoch {epoch} trian_loss: {loss.item():.4f} train_acc: {accs[0]:.4f}, val_acc: {accs[1]:.4f}, test_acc: {accs[2]:.4f}/{choosed_test_acc:.4f}{improved}')
if epoch - best_val_epoch > args.patience:
break
if args.only_pretrain:
return choosed_test_acc
best_val_acc = 0
best_val_epoch = -1
choosed_test_acc = 0
# last_logits = pred.detach()
for epoch in tqdm(range(args.epoch_pretrain, args.epoch)):
model.train()
if epoch == args.epoch_pretrain:
print('\n**** Start to train LinBP ****\n')
model.train()
logits, node_vec, first_adj = model.forward_one(train_mask)
# first_adj = cur_normed_adj
last_logits = logits.detach()
loss1 = F.cross_entropy(logits[train_mask], y[train_mask])
loss2 = 0
for _ in range(args.max_iter):
logits, node_vec = model.forward_two(node_vec, last_logits, train_mask, first_adj)
loss2 += F.cross_entropy(logits[train_mask], y[train_mask])
loss = loss1 + loss2 / args.max_iter
# loss = loss2 / args.max_iter
reg_h_loss = torch.norm(model.H.sum(dim=1), p=1)
loss += reg_h_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
accs = test(model, raw_adj, normed_adj, x, y,
y_onehot, train_mask, val_mask, test_mask, last_logits)
if accs[1] > best_val_acc:
best_val_acc = accs[1]
choosed_test_acc = accs[2]
improved = '*'
best_val_epoch = epoch
else:
improved = ''
print(f'Epoch {epoch} trian_loss: {loss.item():.4f} train_acc: {accs[0]:.4f}, val_acc: {accs[1]:.4f}, test_acc: {accs[2]:.4f}/{choosed_test_acc:.4f}{improved}')
if epoch - best_val_epoch > args.patience:
break
return choosed_test_acc, model
def main(args):
print(nowdt())
set_seed(args.seed)
dataset = build_dataset(args.dataset, to_cuda=True)
test_accs = []
for i, (train_mask, val_mask, test_mask) in enumerate(zip(dataset['train_masks'], dataset['val_masks'], dataset['test_masks'])):
print(f'***** Split {i} starts *****')
print(f'Train: {train_mask.sum().item()}, Val: {val_mask.sum().item()}, Test: {test_mask.sum().item()}\n')
test_acc, model = train(dataset, train_mask.cuda(), val_mask.cuda(), test_mask.cuda(), args)
test_accs.append(test_acc)
print('\n\n\n')
print(f'For {len(test_accs)} splits')
print(sorted(test_accs))
print(f'Mean test acc {np.mean(test_accs)*100:.2f} \pm {np.std(test_accs)*100:.2f}')
if args.saveH:
print('Saving H...')
H = model.H.data.cpu().numpy()
with open(f'{args.dataset}_savedH.npy', 'wb') as f:
np.save(f, H)
torch.save(model, f'{args.dataset}_model')
break
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', default='Texas')
parser.add_argument('--hidden', type=int, default=64)
parser.add_argument('--dropout', default=0.5, type=float)
parser.add_argument('--lr', default=0.01, type=float)
parser.add_argument('--epoch_pretrain', type=int, default=400)
parser.add_argument('--epoch', type=int, default=2000)
parser.add_argument('--n_post_iter', type=int, default=1)
parser.add_argument('--model', type=str, default='gcn')
parser.add_argument('--graph_learn', action='store_true', default=False)
parser.add_argument('--mulH', action='store_true', default=False)
parser.add_argument('--epsilon', type=float, default=0.)
parser.add_argument('--num_pers', type=int, default=4)
parser.add_argument('--max_iter', type=int, default=10)
parser.add_argument('--alpha', type=float, default=0.8)
parser.add_argument('--beta', type=float, default=0.18)
parser.add_argument('--post', action='store_true')
parser.add_argument('--patience', type=int, default=2000)
parser.add_argument('--H_ratio', type=float, default=1.0)
parser.add_argument('--seed', type=int, default=2020)
parser.add_argument('--only_pretrain', action='store_true', default=False)
parser.add_argument('--saveH', action='store_true', default=False)
args = parser.parse_args()
log_dir = 'log/cpgnn'
mymkdir(log_dir)
log_file_path = os.path.join(log_dir, f'{args.dataset}_cpgnn-{args.model}_log.txt')
sys.stdout = Logger(log_file_path)
print(args)
main(args)