-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhelpers.py
895 lines (717 loc) · 36.1 KB
/
helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
import numpy as np
from skimage.measure import block_reduce
from skimage.util import random_noise
from sklearn.linear_model import LinearRegression
import matplotlib.pyplot as plt
from os import path, makedirs
import multiprocessing as mp
from tqdm import tqdm
from scipy.optimize import curve_fit
def brownian_motion(nparticles, nframes, nposframe, D, dt, startAtZero=False):
"""
Simulates the Brownian motion of particles over a specified number of frames
and interframe positions.
Parameters:
- nparticles (int): Number of particles to simulate.
- nframes (int): Number of frames in the simulation.
- nposframe (int): Number of interframe positions to calculate per frame.
- D (float): Diffusion coefficient, influencing the spread of particle movement.
- dt (float): Time interval between frames, affects particle displacement.
- startAtZero (bool): If True, initializes the starting position at (0, 0).
Returns:
- trajectory (ndarray): Array of shape (nparticles, num_steps, 2) containing
the x, y coordinates of each particle at each time step.
`num_steps` is calculated as `nframes * nposframe`.
"""
num_steps = nframes * nposframe
positions = np.zeros(2)
trajectory = np.zeros((nparticles, num_steps, 2))
# the formula for sigma might be wrong ?
#https://en.wikipedia.org/wiki/Mean_squared_displacement#:~:text=In%20statistical%20mechanics%2C%20the%20mean,a%20reference%20position%20over%20time.
#https://en.wikipedia.org/wiki/Gaussian_function
sigma = np.sqrt(2 * D * dt / nposframe)
#sigma = np.sqrt(4 * D * dt / nposframe) # Standard deviation of step size based on D and dt
for p in range(nparticles):
# Generate random steps in x and y directions based on normal distribution
dxy = np.random.randn(num_steps, 2) * sigma
if startAtZero:
dxy[0, :] = [0, 0] # Set starting position at origin for the first step
# Calculate cumulative sum to get positions from step displacements
positions = np.cumsum(dxy, axis=0)
trajectory[p] = positions
return trajectory
def mean_square_displacement(traj):
"""
Computes the Mean Square Displacement (MSD) for a particle trajectory,
which represents the average squared distance moved over time, useful
for analyzing diffusion characteristics.
Parameters:
- traj (ndarray): Array of shape (num_steps, 2) representing the x, y positions
of a particle over time.
Returns:
- msd (ndarray): Array of MSD values computed for each time lag.
"""
len = traj.shape[0]
msd = np.zeros(len)
for tao in range(len):
# Calculate the square of displacements for each tao time t
displacements = np.sum((traj[tao:] - traj[:len-tao])**2, axis=1)
msd[tao] = np.mean(displacements) # Average displacement for the given lag
return msd
def mean_square_displacements(trajectories):
"""
Computes the Mean Square Displacement (MSD) for multiple particle trajectories.
The MSD represents the average squared distance moved over time, useful for
analyzing diffusion characteristics for each particle.
Parameters:
- trajectories (ndarray): Array of shape (nparticles, num_steps, 2) representing
the x, y positions of each particle over time.
Returns:
- msd (ndarray): Array of MSD values with shape (nparticles, num_steps),
where each row corresponds to the MSD values of a particle.
"""
nparticles, num_steps, _ = trajectories.shape
msd = np.zeros((nparticles, num_steps))
# Loop over each particle
for p in range(nparticles):
msd[p] = mean_square_displacement(trajectories[p,:,:])
return msd
def show_plt(plt, title, xlabel='', ylabel='',legend=False):
"""
A helper function to display plots with a uniform style and labeling.
Parameters:
- plt (matplotlib.pyplot): The matplotlib.pyplot module, used for plotting.
- title (str): Title of the plot.
- xlabel (str, optional): Label for the x-axis.
- ylabel (str, optional): Label for the y-axis.
Displays:
- A styled plot with grid, labels, and title.
"""
plt.title(title)
plt.xlabel(xlabel)
plt.ylabel(ylabel)
plt.grid(True)
plt.tight_layout()
if(legend):
plt.legend() # Uncomment if there are multiple series to label
plt.show()
def gaussian_2d(xc, yc, sigma, grid_size, amplitude=1.0):
"""
Generates a 2D Gaussian point spread function (PSF) centered at a specified position.
Parameters:
- xc, yc (float): The center coordinates (x, y) of the Gaussian within the grid.
- sigma (float): Standard deviation of the Gaussian, controlling the spread (related to FWHM).
- grid_size (int): Size of the output grid (grid will be grid_size x grid_size).
- amplitude (float): Peak amplitude of the Gaussian function.
Returns:
- gauss (ndarray): A 2D array representing the Gaussian function centered at (xc, yc).
"""
limit = (grid_size - 1) // 2 # Defines the range for x and y axes
x = np.linspace(-limit, limit, grid_size)
y = np.linspace(-limit, limit, grid_size)
x, y = np.meshgrid(x, y)
# Calculate the Gaussian function centered at (xc, yc)
gauss = amplitude * np.exp(-(((x - xc) ** 2) / (2 * sigma ** 2) + ((y - yc) ** 2) / (2 * sigma ** 2)))
return gauss
def add_noise_background(image, background, poisson_noise, gaussian_noise, normalizeValue=-1):
"""
Adds background intensity and noise to an image, simulating microscopy imaging noise.
Parameters:
- image (ndarray): Input image to which noise and background will be added.
- background (float): Mean intensity value of the background.
- poisson_noise (float): Scale factor for Poisson noise, simulating photon shot noise.
- gaussian_noise (float): Standard deviation for Gaussian noise, simulating electronic noise.
Returns:
- noisy (ndarray): A 16-bit unsigned integer array representing the noisy image.
"""
# Add Gaussian noise to background intensity across the image
background_image = image + np.clip(np.random.normal(background, gaussian_noise, image.shape),
0, background + 3 * gaussian_noise)
# Normalize image to prepare for Poisson noise scaling
maxi = np.max(background_image)
image_normalized = background_image / maxi # Normalization step
# Apply Poisson noise (scaling by poisson_noise factor)
noisy = maxi * poisson_noise * random_noise(image_normalized / poisson_noise, mode='poisson')
if (normalizeValue != -1):
noisy = noisy / normalizeValue
return noisy.astype(np.float16 if normalizeValue != -1 else np.uint16)
def plot1ParticleTrajectory(trajectory, nframes, D):
"""
Plots the trajectory of a particle, coloring each frame differently
and labeling each frame with its number.
Parameters:
- trajectory: np.ndarray of shape (N, 2), where N is the total number of points.
Each row represents the (x, y) coordinates of the particle.
- nframes: int, number of frames to divide the trajectory into.
- D: float, diffusion coefficient for annotation.
"""
plt.figure(figsize=(6, 6))
# Calculate points per frame
points_per_frame = len(trajectory) // nframes
# Plot trajectory segments with frame labels
for f in range(nframes):
start = f * points_per_frame
end = (f + 1) * points_per_frame + (1 if f != nframes - 1 else 0)
# Plot each frame's trajectory in a different color
plt.plot(
trajectory[start:end, 0],
-trajectory[start:end, 1],
lw=1,
label=f'Frame {f + 1}' # Frames start from 1
)
# Add legend and axis labels
plt.legend(loc="best", fontsize=8)
plt.title(f'Brownian Motion of 1 Particle with $D={D}$ (nm)$^2$/s on 4 Frames')
plt.xlabel('X Position (nm)', fontsize=14) # Increased font size
plt.ylabel('Y Position (nm)', fontsize=14) # Increased font size
plt.grid(True)
plt.axis('equal') # Equal scaling for x and y axes
# Increase the tick label size
plt.tick_params(axis='both', which='major', labelsize=15)
plt.tick_params(axis='both', which='minor', labelsize=12)
# Show the plot
plt.tight_layout()
plt.show()
def computeAndPlotMeanMSD(msds, nparticles, nframes, nposframe, dt):
# Set up plot for Mean Square Displacement and diffusion coefficient estimation
plt.figure(figsize=(4, 4))
time_range = np.arange(nframes * nposframe) * dt / nposframe # Time points for MSD plot
#print(time_range)
D_estimated = np.zeros(nparticles) # Array to store estimated diffusion coefficients
# Loop over each particle to calculate and plot its MSD
for p in range(nparticles):
plt.plot(time_range, msds[p], lw=0.25, label=f'Particle {p}')
D_estimated[p] = estimateDfromMSD(msds[p],time_range) # Diffusion coefficient from MSD slope (slope/4 for 2D diffusion)
# Plot the linear fit line showing the MSD slope
#plt.plot(time_range, slope * time_range , 'k--', lw=0.5, label=f'Slope for Particle {p}')
mean_estimated_D =np.mean(D_estimated)
plt.plot(time_range, mean_estimated_D *4* time_range , 'k--', lw=0.5, label=f'Slope for Particle {p}')
# Display estimated diffusion coefficients for each particle
print("Estimated Diffusion Coefficient:", mean_estimated_D)
# Set plot details
plt.title("Mean Square Displacement (MSD) and Estimated Diffusion Coefficient")
plt.xlabel("Time (s)")
plt.ylabel("MSD (nm^2)")
#plt.legend()
plt.grid(True)
plt.tight_layout()
plt.show()
return mean_estimated_D
def estimateDfromMSD(msd,time_range):
model = LinearRegression(fit_intercept=False)
model.fit(time_range.reshape(-1, 1), msd) # Fit model to data
slope = model.coef_[0]
D_estimated = slope / 4
return D_estimated
def generateImagesAndGraphs(trajectory, D, nframes, npixel, factor_hr, nposframe, dt, fwhm_psf, pixelsize, flux, background, poisson_noise, gaussian_noise):
frame_hr = np.zeros((nframes, npixel*factor_hr, npixel*factor_hr))
frame_noisy = np.zeros((nframes, npixel, npixel))
frame_lr = np.zeros((nframes, npixel, npixel))
time_range = np.arange(nframes * nposframe) * dt / nposframe # Time points for MSD plot
fig, axs = plt.subplots(6, 5, figsize=(5*2, 2*6))
for k in range(nframes):
start = k*nposframe
end = (k+1)*nposframe
trajectory_segment = trajectory[start:end,:]
xtraj = trajectory_segment[:,0]
ytraj = trajectory_segment[:,1]
# Generate frame, convolution, resampling, noise
for p in range(nposframe):
frame_spot = gaussian_2d(xtraj[p], ytraj[p], 2.35*fwhm_psf/pixelsize, npixel*factor_hr, flux)
frame_hr[k] += frame_spot
frame_lr[k] = block_reduce(frame_hr[k], block_size=factor_hr, func=np.mean)
frame_noisy[k] = add_noise_background(frame_lr[k], background, poisson_noise, gaussian_noise)
# Save frames
#imsave(f'images/HighRes/frame-T{k:03d}.tif', frame_hr[k].astype(np.float32), check_contrast=False)
#imsave(f'images/Frames/frame-P{poisson_noise}-G{gaussian_noise}-T{k:03d}.tif', frame_noisy[k].astype(np.uint16), check_contrast=False)
# Calculate and print intensity statistics
# Plot
if k < 6:
axs[k,0].imshow(frame_noisy[k], cmap='gray',vmin=0)
#axs[k,0].axis('off')
axs[k,0].set_title(f'Noisy {np.mean(frame_noisy[k]):3.2f}')
axs[k,1].imshow(frame_lr[k], cmap='gray',vmin=0)
#axs[k,1].axis('off')
axs[k,1].set_title(f'LowRes {np.mean(frame_lr[k]):3.2f}')
axs[k,2].imshow(frame_hr[k], cmap='gray')
#axs[k,2].axis('off')
axs[k,2].set_title(f'HigRes {np.mean(frame_hr[k]):3.2f}')
#plt.colorbar(shw)
axs[k,3].plot(xtraj, -ytraj, lw=2, label=f'{k}')
axs[k,3].set_title(f'Trace on frame {k}')
#for kk in range(0,k): axs[k,2].plot(trajectory[:, kk, 0], -trajectory[:, kk, 1], lw=0.5, label=f'{kk}')
axs[k,3].set_xlim(-50, 50)
axs[k,3].set_ylim(-50, 50)
start = k*nposframe
end = (k+1)*nposframe
msd = mean_square_displacement(trajectory_segment)
D_estimated = estimateDfromMSD(msd,time_range[start:end])
axs[k,4].plot(time_range[start:end], msd, lw=1, label=f'D={D_estimated:3.3}')
axs[k,4].set_ylim(0, D)
axs[k,4].set_title(f'MSD D={D_estimated:3.2f}')
plt.suptitle(f'Simulator - Diffusion={D} FWHM={fwhm_psf} Factor HR={factor_hr}')
plt.tight_layout()
plt.show()
#fig.savefig(f'simulator-D{D}-FWHM{fwhm_psf}-hr{factor_hr}.pdf', bbox_inches='tight')
def generateImageFromTrajectory(trajectory, nframes, npixel, factor_hr, nposframe, dt, fwhm_psf, pixelsize, flux, background, poisson_noise, gaussian_noise):
frame_hr = np.zeros((nframes, npixel * factor_hr, npixel * factor_hr))
frame_noisy = np.zeros((nframes, npixel, npixel))
frame_lr = np.zeros((nframes, npixel, npixel))
for k in range(nframes):
start = k * nposframe
end = (k + 1) * nposframe
trajectory_segment = trajectory[start:end, :]
xtraj = trajectory_segment[:, 0]
ytraj = trajectory_segment[:, 1]
# Generate frame, convolution, resampling, noise for each frame
for p in range(nposframe):
frame_spot = gaussian_2d(xtraj[p], ytraj[p], 2.35 * fwhm_psf / pixelsize, npixel * factor_hr, flux)
frame_hr[k] += frame_spot
frame_lr[k] = block_reduce(frame_hr[k], block_size=factor_hr, func=np.mean)
frame_noisy[k] = add_noise_background(frame_lr[k], background, poisson_noise, gaussian_noise)
return frame_hr,frame_noisy
def generateAndPlotMultipleDiffusionSequences(diffusion_coefficients, nframes, npixel, factor_hr, nposframe, dt, fwhm_psf, pixelsize, flux, background, poisson_noise, gaussian_noise):
"""
Generates and displays image sequences for multiple diffusion coefficients,
showing each sequence in a horizontal plot.
Parameters:
- diffusion_coefficients (list of float): List of diffusion coefficients to simulate.
Returns:
- None. Displays a horizontal plot of image sequences for each diffusion coefficient.
"""
n_diffusions = len(diffusion_coefficients)
fig, axs = plt.subplots(n_diffusions, 5, figsize=(5 * 2, 2 * n_diffusions))
# Generate images and graphs for each diffusion coefficient
for i, D in enumerate(diffusion_coefficients):
trajectory = brownian_motion(1, nframes, nposframe, D, dt)[0]
print('Estimated D:', estimateDfromMSD(mean_square_displacement(trajectory),np.arange(nframes * nposframe) * dt / nposframe))
frame_hr,frame_noisy = generateImageFromTrajectory(trajectory, nframes, npixel, factor_hr, nposframe, dt, fwhm_psf, pixelsize, flux, background, poisson_noise, gaussian_noise)
for k in range(nframes):
# Plot images and trajectory for each frame
if k < 5:
axs[i, k].imshow(frame_noisy[k], cmap='gray', vmin=0,vmax=1000)
axs[i, k].set_title(f'D={D}, Frame {k}')
axs[i, k].axis('off')
# Add title for each row
axs[i, 0].set_ylabel(f'D={D}', rotation=0, labelpad=60, fontsize=12)
plt.suptitle("Image Sequences for Different Diffusion Coefficients")
plt.tight_layout()
plt.show()
def generateImagesAndEstimateD(
nparticles, nframes, npixel, factor_hr, nposframe, D, dt, fwhm_psf, pixelsize,
flux, background, poisson_noise, gaussian_noise, normalizeValue=-1):
"""
Generates the full pipeline of images and estimates the diffusion coefficient (D) for each particle.
Parameters:
- nparticles (int): Number of particles.
- nframes (int): Number of frames to generate per particle.
- npixel (int): Number of pixels for the image (square grid).
- factor_hr (int): High-resolution scaling factor.
- nposframe (int): Number of positions within each frame.
- D (float): Diffusion coefficient for Brownian motion simulation.
- dt (float): Time interval between frames.
- fwhm_psf (float): Full width at half maximum for the PSF.
- pixelsize (float): Pixel size in nanometers.
- flux (float): Photon flux of the particles.
- background (float): Background intensity level.
- poisson_noise (float): Poisson noise scaling factor.
- gaussian_noise (float): Gaussian noise standard deviation.
Returns:
- image_array (ndarray): Array of shape (nparticles, nframes, npixel, npixel)
containing the simulated noisy images.
- D_estimates (ndarray): Array of size (nparticles) with estimated diffusion coefficients.
"""
image_array = np.zeros((nparticles, nframes, npixel, npixel))
D_estimates = np.zeros(nparticles)
time_range = np.arange(nframes * nposframe) * dt / nposframe
# Simulate Brownian motion for all particles
trajectories = brownian_motion(nparticles, nframes, nposframe, D, dt)
for p in range(nparticles):
# Generate images for this particle
trajectory = trajectories[p]
frame_hr = np.zeros((nframes, npixel * factor_hr, npixel * factor_hr))
frame_noisy = np.zeros((nframes, npixel, npixel))
for k in range(nframes):
start = k * nposframe
end = (k + 1) * nposframe
trajectory_segment = trajectory[start:end, :]
xtraj = trajectory_segment[:, 0]
ytraj = trajectory_segment[:, 1]
# Generate frames
for pos in range(nposframe):
frame_spot = gaussian_2d(
xtraj[pos], ytraj[pos], 2.35 * fwhm_psf / pixelsize,
npixel * factor_hr, flux
)
frame_hr[k] += frame_spot
# Downsample and add noise
frame_lr = block_reduce(frame_hr[k], block_size=factor_hr, func=np.mean)
frame_noisy[k] = add_noise_background(frame_lr, background, poisson_noise, gaussian_noise, normalizeValue)
# Store the noisy images
image_array[p] = frame_noisy
# Estimate D from the trajectory
msd = mean_square_displacement(trajectory)
D_estimates[p] = estimateDfromMSD(msd, time_range)
return image_array, D_estimates
def generateImagesAndEstimateDFromTrajs(trajectories,
nIndex,nImagesPerIndex, nframes, npixel, factor_hr, nposframe, D, dt, fwhm_psf, pixelsize,
flux, background, poisson_noise, gaussian_noise, normalizeValue=-1):
"""
Generates the full pipeline of images and estimates the diffusion coefficient (D) for each particle.
Parameters:
- nparticles (int): Number of particles.
- nframes (int): Number of frames to generate per particle.
- npixel (int): Number of pixels for the image (square grid).
- factor_hr (int): High-resolution scaling factor.
- nposframe (int): Number of positions within each frame.
- D (float): Diffusion coefficient for Brownian motion simulation.
- dt (float): Time interval between frames.
- fwhm_psf (float): Full width at half maximum for the PSF.
- pixelsize (float): Pixel size in nanometers.
- flux (float): Photon flux of the particles.
- background (float): Background intensity level.
- poisson_noise (float): Poisson noise scaling factor.
- gaussian_noise (float): Gaussian noise standard deviation.
Returns:
- image_array (ndarray): Array of shape (nparticles, nframes, npixel, npixel)
containing the simulated noisy images.
- D_estimates (ndarray): Array of size (nparticles) with estimated diffusion coefficients.
"""
nparticles = nIndex * nImagesPerIndex
trajectories = trajectories.reshape(nparticles, nframes*nposframe, 2)
image_array = np.zeros((nparticles, nframes, npixel, npixel))
D_estimates = np.zeros(nparticles)
time_range = np.arange(nframes * nposframe) * dt / nposframe
for p in range(nparticles):
# Generate images for this particle
trajectory = trajectories[p]
frame_hr = np.zeros((nframes, npixel * factor_hr, npixel * factor_hr))
frame_noisy = np.zeros((nframes, npixel, npixel))
for k in range(nframes):
start = k * nposframe
end = (k + 1) * nposframe
trajectory_segment = trajectory[start:end, :]
xtraj = trajectory_segment[:, 0]
ytraj = trajectory_segment[:, 1]
# Generate frames
for pos in range(nposframe):
frame_spot = gaussian_2d(
xtraj[pos], ytraj[pos], 2.35 * fwhm_psf / pixelsize,
npixel * factor_hr, flux
)
frame_hr[k] += frame_spot
# Downsample and add noise
frame_lr = block_reduce(frame_hr[k], block_size=factor_hr, func=np.mean)
frame_noisy[k] = add_noise_background(frame_lr, background, poisson_noise, gaussian_noise, normalizeValue)
# Store the noisy images
image_array[p] = frame_noisy
# Estimate D from the trajectory
msd = mean_square_displacement(trajectory)
D_estimates[p] = estimateDfromMSD(msd, time_range)
return image_array, D_estimates
def save_image(image, filename):
"""
Save a single image to a .npy file.
Parameters:
- image: A numpy array of shape (8, 64, 64) and dtype np.float16.
- filename: The filename (including path) to save the image, ending with .npy.
"""
if image.shape != (8, 64, 64):
raise ValueError("Image must have shape (8, 64, 64)")
# Save the image as a .npy file
np.save(filename, image)
print(f"Image saved to {filename}")
def load_image(filename):
"""
Load an image from a .npy file.
Parameters:
- filename: The filename (including path) of the .npy file.
Returns:
- A numpy array of shape (8, 64, 64) and dtype np.float16.
"""
image = np.load(filename)
print(f"Image loaded from {filename}")
return image
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.pyplot as plt
def plot_image_frames(image, title="Image Frames", output_path=None):
"""
Plot all frames of an image in a grid layout.
The layout depends on the number of frames:
- 4 frames: 1 row of 4 columns.
- 8 frames: 2 rows of 4 columns.
- 16 frames: 4 rows of 4 columns.
Parameters:
- image: A numpy array of shape (N, 64, 64), where N is 4, 8, or 16.
- title: Title for the entire plot (optional).
- output_path: File path to save the plot (optional).
"""
n_frames = image.shape[0]
if n_frames not in {4, 8, 16}:
raise ValueError("Image must have 4, 8, or 16 frames.")
# Determine grid layout based on the number of frames (rows of 4 images)
ncols = 4
nrows = (n_frames + ncols - 1) // ncols # Calculate rows needed for 4 columns
# Create the grid for plotting
fig, axes = plt.subplots(nrows, ncols, figsize=(3 * ncols, 3 * nrows))
fig.suptitle(title, fontsize=16)
# Flatten axes to simplify indexing
axes = axes.flatten()
# Plot each frame
for i in range(n_frames):
ax = axes[i]
ax.imshow(image[i], cmap="gray", vmin=0, vmax=1, interpolation="nearest")
ax.set_title(f"Frame {i+1}")
ax.axis("off")
# Hide any unused subplots
for j in range(n_frames, len(axes)):
axes[j].axis("off")
plt.tight_layout(rect=[0, 0, 1, 0.95]) # Adjust layout to include the title
if output_path:
plt.savefig(output_path)
plt.show()
def plot_image_frames16(image, title="Image Frames"):
"""
Plot all 16 frames of an image in a 4x4 grid.
Parameters:
- image: A numpy array of shape (8, 64, 64).
- title: Title for the entire plot (optional).
"""
if image.shape != (16, 64, 64):
print(image.shape)
raise ValueError("Image must have shape (16, 64, 64)")
# Create a 2x4 grid for plotting
fig, axes = plt.subplots(4, 4, figsize=(12, 6))
fig.suptitle(title, fontsize=16)
# Plot each frame
for i in range(16):
ax = axes[i // 4, i % 4] # Determine subplot position
ax.imshow(image[i], cmap="gray",vmin=0,vmax=1, interpolation="nearest")
ax.set_title(f"Frame {i+1}")
ax.axis("off") # Hide axes for better visualization
plt.tight_layout(rect=[0, 0, 1, 0.95]) # Adjust layout to include the title
plt.show()
CPU_COUNT = mp.cpu_count()
def generateImagesAndEstimateDMAXD(
nparticles, nframes, npixel, factor_hr, nposframe, D, dt, fwhm_psf, pixelsize,
flux, background, poisson_noise, gaussian_noise, normalizeValue=-1, save_dir=None, silent=False):
"""
Generates the full pipeline of images and estimates the diffusion coefficient (D) for each particle.
Parameters:
- nparticles (int): Number of particles.
- nframes (int): Number of frames to generate per particle.
- npixel (int): Number of pixels for the image (square grid).
- factor_hr (int): High-resolution scaling factor.
- nposframe (int): Number of positions within each frame.
- D (float): Diffusion coefficient for Brownian motion simulation.
- dt (float): Time interval between frames.
- fwhm_psf (float): Full width at half maximum for the PSF.
- pixelsize (float): Pixel size in nanometers.
- flux (float): Photon flux of the particles.
- background (float): Background intensity level.
- poisson_noise (float): Poisson noise scaling factor.
- gaussian_noise (float): Gaussian noise standard deviation.
- save_dir (str): Directory to save the images and D estimates.
Returns:
- image_array (ndarray): Array of shape (nparticles, nframes, npixel, npixel)
containing the simulated noisy images.
- D_estimates (ndarray): Array of size (nparticles) with estimated diffusion coefficients.
"""
image_array = np.zeros((nparticles, nframes, npixel, npixel))
D_estimates = np.zeros(nparticles)
time_range = np.arange(nframes * nposframe) * dt / nposframe
if not silent: print(f"running program on each {CPU_COUNT} cpu core of the computer")
# Simulate Brownian motion for all particles
trajectories = _brownian_motion(nparticles, nframes, nposframe, D, dt, silent=silent)
args = [(trajectories[p].copy(), nframes, npixel, factor_hr, nposframe,
fwhm_psf, pixelsize, flux, background, poisson_noise, gaussian_noise,
time_range, normalizeValue) for p in range(nparticles)]
# Multiprocessing
with mp.Pool(CPU_COUNT) as pool:
results = list(tqdm(
pool.imap(_generateImageforParticle, args),
total=nparticles,
desc="Generating images and estimating D",
disable=silent
))
for p, (frame_noisy, D_estimate) in enumerate(results):
image_array[p] = frame_noisy
D_estimates[p] = D_estimate
if save_dir is not None:
if not path.isdir(save_dir):
makedirs(save_dir)
print(f"Directory {save_dir} didn't exist, it has now been created")
np.save(path.join(save_dir,"images.npy"), image_array)
np.save(path.join(save_dir,"D_estimates.npy"), D_estimates)
print(f"Images and D estimates saved in {save_dir}")
return image_array, D_estimates
def _brownian_motion(nparticles, nframes, nposframe, D, dt, startAtZero=False, silent=False):
"""
Simulates the Brownian motion of particles over a specified number of frames
and interframe positions.
Parameters:
- nparticles (int): Number of particles to simulate.
- nframes (int): Number of frames in the simulation.
- nposframe (int): Number of interframe positions to calculate per frame.
- D (float): Diffusion coefficient, influencing the spread of particle movement.
- dt (float): Time interval between frames, affects particle displacement.
- startAtZero (bool): If True, initializes the starting position at (0, 0).
Returns:
- trajectory (ndarray): Array of shape (nparticles, num_steps, 2) containing
the x, y coordinates of each particle at each time step.
`num_steps` is calculated as `nframes * nposframe`.
"""
num_steps = nframes * nposframe
positions = np.zeros(2)
trajectory = np.zeros((nparticles, num_steps, 2))
# the formula for sigma might be wrong ?
#https://en.wikipedia.org/wiki/Mean_squared_displacement#:~:text=In%20statistical%20mechanics%2C%20the%20mean,a%20reference%20position%20over%20time.
#https://en.wikipedia.org/wiki/Gaussian_function
sigma = np.sqrt(2 * D * dt / nposframe)
#sigma = np.sqrt(4 * D * dt / nposframe) # Standard deviation of step size based on D and dt
#for p in range(nparticles):
with mp.Pool(mp.cpu_count()) as pool:
trajectory = np.array(list(tqdm(
pool.imap(_generate_trajectory, [(num_steps, sigma, startAtZero)]*nparticles),
total=nparticles,
desc="Generating trajectories",
disable=silent
)))
assert trajectory.shape == (nparticles, num_steps, 2), "Trajectory shape is incorrect"
return trajectory
def _generate_trajectory(args):
(num_steps, sigma, startAtZero) = args
# Generate random steps in x and y directions based on normal distribution
dxy = np.random.randn(num_steps, 2) * sigma
if startAtZero:
dxy[0, :] = [0, 0] # Set starting position at origin for the first step
# Calculate cumulative sum to get positions from step displacements
positions = np.cumsum(dxy, axis=0)
# if the trajectory is out of the frame, we redo the trajectory
# change this magic numbers to pixelsize * nbrPixels
if np.any(np.abs(positions) > 100 * 64):
return _generate_trajectory(args)
return positions
def _generateImageforParticle(arg):
"""
Generates the images for a single particle and estimates the diffusion coefficient (D)
"""
(trajectory, nframes, npixel, factor_hr, nposframe,
fwhm_psf, pixelsize, flux, background, poisson_noise, gaussian_noise,
time_range, normalizeValue) = arg
frame_hr = np.zeros((nframes, npixel * factor_hr, npixel * factor_hr))
frame_noisy = np.zeros((nframes, npixel, npixel))
for k in range(nframes):
start = k * nposframe
end = (k + 1) * nposframe
trajectory_segment = trajectory[start:end, :]
xtraj = trajectory_segment[:, 0]
ytraj = trajectory_segment[:, 1]
# Generate frames
for pos in range(nposframe):
frame_spot = gaussian_2d(
xtraj[pos], ytraj[pos], 2.35 * fwhm_psf / pixelsize,
npixel * factor_hr, flux
)
frame_hr[k] += frame_spot
# Downsample and add noise
frame_lr = block_reduce(frame_hr[k], block_size=factor_hr, func=np.mean)
frame_noisy[k] = add_noise_background(frame_lr, background, poisson_noise, gaussian_noise, normalizeValue)
# Estimate D from the trajectory
msd = mean_square_displacement(trajectory)
D_estimate = estimateDfromMSD(msd, time_range)
return (frame_noisy, D_estimate)
# Define a 2D Gaussian model
def two_d_gaussian(coords, amplitude, x0, y0, sigma_x, sigma_y, theta, offset):
x, y = coords
xo = float(x0)
yo = float(y0)
a = (np.cos(theta)**2) / (2 * sigma_x**2) + (np.sin(theta)**2) / (2 * sigma_y**2)
b = -(np.sin(2 * theta)) / (4 * sigma_x**2) + (np.sin(2 * theta)) / (4 * sigma_y**2)
c = (np.sin(theta)**2) / (2 * sigma_x**2) + (np.cos(theta)**2) / (2 * sigma_y**2)
g = offset + amplitude * np.exp(- (a * ((x - xo)**2) + 2 * b * (x - xo) * (y - yo) + c * ((y - yo)**2)))
return g.ravel()
# Fit a 2D Gaussian to an image
def fit_gaussian_to_image(img):
y_size, x_size = img.shape
x = np.linspace(0, x_size - 1, x_size)
y = np.linspace(0, y_size - 1, y_size)
x, y = np.meshgrid(x, y)
amplitude_guess = np.max(img)
y0_guess, x0_guess = np.unravel_index(np.argmax(img), img.shape)
sigma_x_guess = sigma_y_guess = 2.0
theta_guess = 0
offset_guess = np.median(img)
initial_guess = (amplitude_guess, x0_guess, y0_guess, sigma_x_guess, sigma_y_guess, theta_guess, offset_guess)
popt, _ = curve_fit(two_d_gaussian, (x, y), img.ravel(), p0=initial_guess, maxfev=50000)
x0, y0 = popt[1], popt[2]
return x0, y0
# Extract centroids from the images
def get_centroids_1(images):
centroids = []
for img in images:
x0, y0 = fit_gaussian_to_image(img)
centroids.append((x0, y0))
return np.array(centroids)
# Compute Mean Squared Displacement (MSD)
def compute_msd(positions, dt):
N = positions.shape[0]
msd = []
time_lags = []
for lag in range(1, N):
diffs = positions[lag:] - positions[:-lag]
squared_diffs = np.sum(diffs**2, axis=1)
msd.append(np.mean(squared_diffs))
time_lags.append(lag * dt)
return np.array(time_lags), np.array(msd)
# Fit diffusion coefficient from MSD
def fit_diffusion_coefficient(time_lags, msd):
model = LinearRegression(fit_intercept=False)
model.fit(time_lags.reshape(-1, 1), msd) # Fit model to data
slope = model.coef_[0]
D_estimated = slope / 4
return D_estimated
def getCoarseD(images, dt):
# Compute centroids, MSD, and diffusion coefficient
centroids = get_centroids_1(images)
time_lags, msd = compute_msd(centroids, dt)
D_pixel_units = fit_diffusion_coefficient(time_lags, msd)
return D_pixel_units
import numpy as np
def compute_coarseD_for_batch(images_batch, dt):
"""
Computes coarse diffusion coefficient (D) for a batch of images.
Args:
images_batch (numpy.ndarray): A NumPy array of shape (N, 16, 64, 64),
where N is the number of image sequences.
dt (float): The time interval between frames in the image sequence.
Returns:
numpy.ndarray: A 1D array of coarse D predictions, with length N.
"""
# Validate input shape
if images_batch.ndim != 4 or images_batch.shape[1:] != (16, 64, 64):
raise ValueError("Input images_batch must have shape (N, 16, 64, 64).")
# Initialize a list to store coarse D values
coarseD_values = []
# Iterate over each sequence in the batch
for images in images_batch:
# Call getCoarseD for the current sequence of 16 images
coarseD = getCoarseD(images, dt)
coarseD_values.append(coarseD)
# Convert the list of coarse D values to a NumPy array
return np.array(coarseD_values)
def moving_average(array, window_size=25):
"""
Computes the moving average of a NumPy array.
Parameters:
array (np.ndarray): The input array.
window_size (int): The size of the moving average window (default is 10).
Returns:
np.ndarray: The smoothed array with the moving average applied.
"""
if window_size < 1:
raise ValueError("Window size must be at least 1.")
if window_size > len(array):
raise ValueError("Window size cannot be larger than the array length.")
return np.convolve(array, np.ones(window_size) / window_size, mode='same')