-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
executable file
·256 lines (215 loc) · 11.1 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import os
import torch
import lpips
import numpy as np
from PIL import Image
from transformers import CLIPTextModel
from diffusers import StableDiffusionInstructPix2PixPipeline, AutoencoderKL, UNet2DConditionModel
from skimage.metrics import structural_similarity as ssim
from skimage.metrics import peak_signal_noise_ratio as psnr
import torchvision.transforms as transforms
# Load LPIPS model (AlexNet is used by default)
lpips_model = lpips.LPIPS(net='alex').to("cuda")
def process_image(image, res):
image = image.resize((res, res), Image.Resampling.NEAREST)
image = np.array(image).astype(np.float32) / 255 # [0, 1]
image = 2 * image - 1 # [-1, 1]
return image
# Function to calculate SSIM, LPIPS, and PSNR
def calculate_metrics(generated_img, gt_img):
"""
Calculates SSIM, LPIPS, and PSNR between generated and ground truth images.
Args:
generated_img (PIL.Image.Image): Generated image.
gt_img (PIL.Image.Image): Ground truth image.
Returns:
dict: Metrics including SSIM, LPIPS, and PSNR.
"""
# Convert images to NumPy arrays
generated_np = np.array(generated_img)
gt_np = np.array(gt_img)
# Calculate SSIM
if len(generated_np.shape) == 3: # RGB images
ssim_value = np.mean([
ssim(generated_np[..., c], gt_np[..., c], data_range=255)
for c in range(generated_np.shape[2])
])
else: # Grayscale images
ssim_value = ssim(generated_np, gt_np, data_range=255)
# Calculate PSNR
psnr_value = psnr(gt_np, generated_np, data_range=255)
# Convert to tensors for LPIPS
transform = transforms.ToTensor()
generated_tensor = transform(generated_img).unsqueeze(0).to("cuda")
gt_tensor = transform(gt_img).unsqueeze(0).to("cuda")
# Calculate LPIPS
lpips_value = lpips_model(generated_tensor, gt_tensor).item()
return {"SSIM": ssim_value, "LPIPS": lpips_value, "PSNR": psnr_value}
class InpaintTexture:
def __init__(self, unet_path, pretrained_model, vae_path):
sd_device = "cuda"
# Load VAE models for different texture properties
self.vae_diffuse = AutoencoderKL.from_pretrained(
vae_path + "/refine_vae",
subfolder="vae_checkpoint_diffuse",
revision="fp32",
local_files_only=True,
torch_dtype=torch.float32
).to(sd_device)
self.vae_normal = AutoencoderKL.from_pretrained(
vae_path + "/refine_vae",
subfolder="vae_checkpoint_normal",
revision="fp32",
local_files_only=True,
torch_dtype=torch.float32
).to(sd_device)
self.vae_roughness = AutoencoderKL.from_pretrained(
vae_path + "/refine_vae",
subfolder="vae_checkpoint_roughness",
revision="fp32",
local_files_only=True,
torch_dtype=torch.float32
).to(sd_device)
print('Loading unet ...')
unet = UNet2DConditionModel.from_pretrained(
unet_path, subfolder="unet", revision=None
)
print('Loading text_encoder ...')
text_encoder = CLIPTextModel.from_pretrained(
pretrained_model, subfolder="text_encoder", revision=None
)
print('Loading pipline ...')
self.invpipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(
pretrained_model,
unet=unet,
text_encoder=text_encoder,
vae=self.vae_diffuse,
revision=None,
safety_checker=None,
torch_dtype=torch.float32
).to("cuda")
generator = torch.Generator("cuda").manual_seed(0)
def run(self, partual_img, save_to):
with torch.no_grad():
# Generate latent representation
latents = self.invpipe(
"fill the missing parts of a fabric texture matching the existing colors and style",
image=partual_img,
num_inference_steps=50,
image_guidance_scale=1.5,
guidance_scale=7,
output_type="latent",
return_dict=True,
)[0] # torch.Size([1, 4, 128, 128])
# Decode and save diffuse texture
pt = self.vae_diffuse.decode(latents / self.vae_diffuse.config.scaling_factor, return_dict=False)[0]
diffuse = self.invpipe.image_processor.postprocess(pt, output_type="pil", do_denormalize=[True])[0]
diffuse.save(os.path.join(save_to, "texture_diffuse.png"))
# Decode and save normal map
pt = self.vae_normal.decode(latents / self.vae_normal.config.scaling_factor, return_dict=False)[0]
normal = self.invpipe.image_processor.postprocess(pt, output_type="pil", do_denormalize=[True])[0]
normal.save(os.path.join(save_to, "texture_normal.png"))
# Decode and save roughness map
pt = self.vae_roughness.decode(latents / self.vae_roughness.config.scaling_factor, return_dict=False)[0]
roughness = self.invpipe.image_processor.postprocess(pt, output_type="pil", do_denormalize=[True])[0]
roughness.save(os.path.join(save_to, "texture_roughness.png"))
if __name__ == "__main__":
res = 512
unet_path = "checkpoints/completion_diffusion"
pretrained_model = "stable-diffusion-v1-5/stable-diffusion-v1-5"
vae_path = "checkpoints"
test_path = "datasets/testset"
file_paths = sorted([os.path.join(test_path, f) for f in os.listdir(test_path)])
print(f"Testing on {len(file_paths)} images")
# Initialize generator
gen = InpaintTexture(unet_path, pretrained_model, vae_path)
# Define output and input paths
output_folder = os.path.join("test_outputs", *unet_path.split("/")[-2:])
# Create output directory if not exists
if output_folder is not None and not os.path.exists(output_folder):
os.makedirs(output_folder)
# Store metrics for all images
results = []
metrics_summary = {"diffuse": {"SSIM": 0, "LPIPS": 0, "PSNR": 0},
"normal": {"SSIM": 0, "LPIPS": 0, "PSNR": 0},
"roughness": {"SSIM": 0, "LPIPS": 0, "PSNR": 0},
"count": {"diffuse": 0, "normal": 0, "roughness": 0}}
# Generate textures and calculate metrics for each partial image
for idx, file_path in enumerate(file_paths):
save_to = os.path.join(output_folder, file_path.split('/')[-2] + '_' + file_path.split('/')[-1])
if not os.path.exists(save_to):
os.makedirs(save_to)
# Read ground truth and partial images
diffuse_path = os.path.join(file_path, "color.png")
gt_diffuse = Image.open(diffuse_path).convert("RGB")
gt_diffuse = gt_diffuse.resize((res, res), Image.Resampling.NEAREST)
gt_diffuse.save(os.path.join(save_to, "gt_diffuse.png"))
# Read optional ground truth normal and roughness images
gt_normal_path = os.path.join(file_path, "normal.png")
gt_roughness_path = os.path.join(file_path, "roughness.png")
gt_normal = Image.open(gt_normal_path).convert("RGB") if os.path.exists(gt_normal_path) else None
if gt_normal is not None:
gt_normal = gt_normal.resize((res, res), Image.Resampling.NEAREST)
gt_roughness = Image.open(gt_roughness_path).convert("RGB") if os.path.exists(gt_roughness_path) else None
if gt_roughness is not None:
gt_roughness = gt_roughness.resize((res, res), Image.Resampling.NEAREST)
# Read partial image
partual_img = Image.open(os.path.join(file_path, f"partual_color.png")).convert("RGB")
partual_img.save(os.path.join(save_to, "input.png"))
# Process partial image and run generator
partual_img = process_image(partual_img, res)
mask = Image.open(os.path.join(file_path, f"mask.png")).convert("L")
mask = np.array(mask).astype(bool)
Image.fromarray((mask.squeeze() * 255).astype(np.uint8)).save(os.path.join(save_to, "mask.png"))
mask = 2 * mask - 1 # [-1, 1]
# Run texture completion
gen.run(partual_img, save_to)
# Load generated images
generated_diffuse = Image.open(os.path.join(save_to, "texture_diffuse.png")).convert("RGB")
generated_diffuse = generated_diffuse.resize((res, res), Image.Resampling.NEAREST)
generated_normal = Image.open(os.path.join(save_to, "texture_normal.png")).convert("RGB")
generated_normal = generated_normal.resize((res, res), Image.Resampling.NEAREST)
generated_roughness = Image.open(os.path.join(save_to, "texture_roughness.png")).convert("RGB")
generated_roughness = generated_roughness.resize((res, res), Image.Resampling.NEAREST)
# Calculate metrics for each property
metrics = {
"index": idx,
"diffuse": calculate_metrics(generated_diffuse, gt_diffuse),
}
# Update metrics for diffuse
metrics_summary["diffuse"]["SSIM"] += metrics["diffuse"]["SSIM"]
metrics_summary["diffuse"]["LPIPS"] += metrics["diffuse"]["LPIPS"]
metrics_summary["diffuse"]["PSNR"] += metrics["diffuse"]["PSNR"]
metrics_summary["count"]["diffuse"] += 1
# Update metrics for normal if available
if gt_normal:
metrics["normal"] = calculate_metrics(generated_normal, gt_normal)
metrics_summary["normal"]["SSIM"] += metrics["normal"]["SSIM"]
metrics_summary["normal"]["LPIPS"] += metrics["normal"]["LPIPS"]
metrics_summary["normal"]["PSNR"] += metrics["normal"]["PSNR"]
metrics_summary["count"]["normal"] += 1
# Update metrics for roughness if available
if gt_roughness:
metrics["roughness"] = calculate_metrics(generated_roughness, gt_roughness)
metrics_summary["roughness"]["SSIM"] += metrics["roughness"]["SSIM"]
metrics_summary["roughness"]["LPIPS"] += metrics["roughness"]["LPIPS"]
metrics_summary["roughness"]["PSNR"] += metrics["roughness"]["PSNR"]
metrics_summary["count"]["roughness"] += 1
results.append(metrics)
print(f"Metrics for {file_path}: {metrics}")
# Calculate average metrics
avg_metrics = {
"diffuse": {k: v / metrics_summary["count"]["diffuse"] for k, v in metrics_summary["diffuse"].items()},
"normal": {k: v / metrics_summary["count"]["normal"] if metrics_summary["count"]["normal"] > 0 else None for k, v in metrics_summary["normal"].items()},
"roughness": {k: v / metrics_summary["count"]["roughness"] if metrics_summary["count"]["roughness"] > 0 else None for k, v in metrics_summary["roughness"].items()},
}
# Save results to file
results_path = os.path.join(output_folder, "metrics.json")
with open(results_path, "w") as f:
import json
json.dump({"per_image": results, "average": avg_metrics}, f, indent=4)
print(f"Metrics saved to {results_path}")
# Print average metrics
print("Average Metrics:")
for key, value in avg_metrics.items():
print(f"{key.capitalize()} - SSIM: {value['SSIM']:.4f}, LPIPS: {value['LPIPS']:.4f}, PSNR: {value['PSNR']:.4f}")