-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsketch.js
328 lines (290 loc) · 10.4 KB
/
sketch.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
// Copyright (c) 2018 ml5
//
// This software is released under the MIT License.
// https://opensource.org/licenses/MIT
// Use Reload (https://www.npmjs.com/package/reload) from Node to work on JS and restart server simultaneously (reload -b)
/* ===
ml5 Example
KNN Classification on Webcam Images with mobileNet. Built with p5.js
=== */
let video;
// Create a KNN classifier
const knnClassifier = ml5.KNNClassifier();
let featureExtractor;
// Speech Recognition, Documentation: https://w3c.github.io/speech-api/#speechreco-section and Mozilla's blog: https://developer.mozilla.org/en-US/docs/Web/API/Web_Speech_API/Using_the_Web_Speech_API#Demo
var SpeechRecognition = SpeechRecognition || webkitSpeechRecognition
var SpeechGrammarList = SpeechGrammarList || webkitSpeechGrammarList
var SpeechRecognitionEvent = SpeechRecognitionEvent || webkitSpeechRecognitionEvent
var recognition = new SpeechRecognition();
var words = [ 'predict', 'record rock', 'record paper', 'record scissor', 'reset rock', 'reset paper', 'reset scissor', 'load', 'save', 'hey jarvis', 'clear'];
var grammar = '#JSGF V1.0; grammar commands; public <color> = ' + words.join(' | ') + ' ;'
var speechRecognitionList = new SpeechGrammarList();
var recognized = document.querySelector('.recognizing');
var gready = document.querySelector('.gettingready');
var preds = document.querySelector('.predictions');
gready.innerHTML = '';
var wakeWordReceived = false;
var word = '';
speechRecognitionList.addFromString(grammar, 1);
recognition.grammars = speechRecognitionList;
recognition.continuous = true;
recognition.lang = 'en-US';
recognition.interimResults = false;
recognition.maxAlternatives = 1;
function setup() {
// Create a featureExtractor that can extract the already learned features from MobileNet
featureExtractor = ml5.featureExtractor('MobileNet', modelReady);
noCanvas();
// Create a video element
video = createCapture(VIDEO);
// Append it to the videoContainer DOM element
video.parent('videoContainer');
video.size(340, 240);
// Create the UI buttons
createButtons();
// Start recognition
recognition.start();
console.log('waiting for Wake word.');
}
function modelReady(){
select('#status').html('FeatureExtractor(mobileNet model) Loaded')
}
// Add the current frame from the video to the classifier
function addExample(label) {
// Get the features of the input video
const features = featureExtractor.infer(video);
// You can also pass in an optional endpoint, defaut to 'conv_preds'
// const features = featureExtractor.infer(video, 'conv_preds');
// You can list all the endpoints by calling the following function
// console.log('All endpoints: ', featureExtractor.mobilenet.endpoints)
// Add an example with a label to the classifier
knnClassifier.addExample(features, label);
updateCounts();
}
// Predict the current frame.
function classify() {
// Get the total number of labels from knnClassifier
const numLabels = knnClassifier.getNumLabels();
if (numLabels <= 0) {
console.error('There is no examples in any label');
return;
}
// Get the features of the input video
const features = featureExtractor.infer(video);
// Use knnClassifier to classify which label do these features belong to
// You can pass in a callback function `gotResults` to knnClassifier.classify function
knnClassifier.classify(features, gotResults);
// You can also pass in an optional K value, K default to 3
// knnClassifier.classify(features, 3, gotResults);
// You can also use the following async/await function to call knnClassifier.classify
// Remember to add `async` before `function predictClass()`
// const res = await knnClassifier.classify(features);
// gotResults(null, res);
}
// A util function to create UI buttons
function createButtons() {
// When the A button is pressed, add the current frame
// from the video with a label of "rock" to the classifier
buttonA = select('#addClassRock');
buttonA.mousePressed(function() {
addExample('Rock');
});
// When the B button is pressed, add the current frame
// from the video with a label of "paper" to the classifier
buttonB = select('#addClassPaper');
buttonB.mousePressed(function() {
addExample('Paper');
});
// When the C button is pressed, add the current frame
// from the video with a label of "scissor" to the classifier
buttonC = select('#addClassScissor');
buttonC.mousePressed(function() {
addExample('Scissor');
});
// Reset buttons
resetBtnA = select('#resetRock');
resetBtnA.mousePressed(function() {
clearLabel('Rock');
});
resetBtnB = select('#resetPaper');
resetBtnB.mousePressed(function() {
clearLabel('Paper');
});
resetBtnC = select('#resetScissor');
resetBtnC.mousePressed(function() {
clearLabel('Scissor');
});
// Predict button
buttonPredict = select('#buttonPredict');
buttonPredict.mousePressed(classify);
// Clear all classes button
buttonClearAll = select('#clearAll');
buttonClearAll.mousePressed(clearAllLabels);
// Load saved classifier dataset
buttonSetData = select('#load');
buttonSetData.mousePressed(loadMyKNN);
// Get classifier dataset
buttonGetData = select('#save');
buttonGetData.mousePressed(saveMyKNN);
}
// Show the results
function gotResults(err, result) {
// Display any error
if (err) {
console.error(err);
}
if (result.confidencesByLabel) {
const confidences = result.confidencesByLabel;
// result.label is the label that has the highest confidence
if (result.label) {
select('#result').html(result.label);
select('#confidence').html(`${confidences[result.label] * 100} %`);
preds.innerHTML = result.label + ' with confidence of ' + confidences[result.label] * 100 + '%';
}
select('#confidenceRock').html(`${confidences['Rock'] ? confidences['Rock'] * 100 : 0} %`);
select('#confidencePaper').html(`${confidences['Paper'] ? confidences['Paper'] * 100 : 0} %`);
select('#confidenceScissor').html(`${confidences['Scissor'] ? confidences['Scissor'] * 100 : 0} %`);
}
classify();
}
// Update the example count for each label
function updateCounts() {
const counts = knnClassifier.getCountByLabel();
select('#exampleRock').html(counts['Rock'] || 0);
select('#examplePaper').html(counts['Paper'] || 0);
select('#exampleScissor').html(counts['Scissor'] || 0);
}
// Clear the examples in one label
function clearLabel(label) {
knnClassifier.clearLabel(label);
updateCounts();
}
// Clear all the examples in all labels
function clearAllLabels() {
knnClassifier.clearAllLabels();
updateCounts();
}
// Save dataset as myKNNDataset.json
function saveMyKNN() {
knnClassifier.save('myKNNDataset');
}
// Load dataset to the classifier
function loadMyKNN() {
knnClassifier.load('./myKNNDataset.json', updateCounts);
}
// helper function to wait some milliseconds
function wait(ms, start) {
if (start < ms) {
setTimeout(function() {
gready.innerHTML += '... ' + (ms-start);
wait(ms,++start);
}, 1000); // 1 second (in milliseconds)
} else {
gready.innerHTML = '';
}
}
// Execute commands based on input
function executeCommand(cmd) {
cmds = cmd;
switch (cmds) {
case "predict":
console.log("PREDICT COMMAND...");
setTimeout(function() {
recognized.innerHTML = "PREDICT COMMAND...";
}, 1);
classify();
break;
case "record rock":
console.log("RECORD ROCK COMMAND...");
setTimeout(function() {
recognized.innerHTML = "RECORD ROCK COMMAND...";
}, 1);
wait(3, 0);
[5].forEach(i => Array(i).fill(i).forEach(_ => {
addExample('Rock');
}))
break;
case "record paper":
console.log("RECORD PAPER COMMAND...");
recognized.innerHTML = "RECORD PAPER COMMAND...";
wait(3, 0);
[5].forEach(i => Array(i).fill(i).forEach(_ => {
addExample('Paper');
}))
break;
case "record scissor":
console.log("RECORD SCISSOR COMMAND...");
recognized.innerHTML = "RECORD SCISSOR COMMAND...";
wait(3, 0);
[5].forEach(i => Array(i).fill(i).forEach(_ => {
addExample('Scissor');
}))
break;
case "reset rock":
console.log("RESET ROCK COMMAND...");
recognized.innerHTML = "RESET ROCK COMMAND...";
clearLabel('Rock');
break;
case "reset paper":
console.log("RESET PAPER COMMAND...");
recognized.innerHTML = "RESET PAPER COMMAND...";
clearLabel('Paper');
break;
case "reset scissor":
console.log("RESET SCISSOR COMMAND...");
recognized.innerHTML = "RESET SCISSOR COMMAND...";
clearLabel('Scissor');
break;
case "load":
console.log("LOAD COMMAND...");
recognized.innerHTML = "LOAD COMMAND...";
loadMyKNN();
break;
case "save":
console.log("SAVE COMMAND...");
recognized.innerHTML = "SAVE COMMAND...";
saveMyKNN();
break;
case "clear":
console.log("CLEAR ALL LABELS COMMAND...");
recognized.innerHTML = "CLEAR ALL LABELS COMMAND...";
clearAllLabels();
break;
default:
console.log("What is '"+cmds+"' ?");
recognized.innerHTML = "What is '"+cmds+"' ?";
};
recognized.innerHTML += "... Done!";
}
// Event handlers for speech recognition
recognition.onresult = function(event) {
var last = event.results.length - 1;
word = event.results[last][0].transcript.trim().toLowerCase();
if (wakeWordReceived == false && word == "hey jarvis") {
console.log("Wake word received, ready to receive command...");
recognized.innerHTML = "Wake word received, ready to receive command...";
wakeWordReceived = true;
} else if (wakeWordReceived == true) {
console.log("Executing command: ", word);
recognized.innerHTML = "Executing command: " + word;
executeCommand(word);
wakeWordReceived = false;
} else {
console.log("Please say the wake word first");
recognized.innerHTML = "Please say the wake word first";
}
}
// Not sure if I need this event handler since the speech recognition service is continuous
recognition.onnomatch = function(event) {
console.log("no match, try again");
}
// If no-speech encountered (after 6 seconds of silence), restart the service with onend event handler loop
recognition.onerror = function(event) {
console.log("Error encountered: ", event.message)
recognition.stop();
};
// restarts the service, whenever it ends
recognition.onend = function() {
console.log("onend hit, restarting...")
recognition.start();
};