forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_higgs_test.py
155 lines (136 loc) · 6 KB
/
train_higgs_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for boosted_tree."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import tempfile
import numpy as np
import pandas as pd
import tensorflow as tf
# pylint: disable=g-bad-import-order
from official.boosted_trees import train_higgs
from official.utils.testing import integration
TEST_CSV = os.path.join(os.path.dirname(__file__), "train_higgs_test.csv")
tf.logging.set_verbosity(tf.logging.ERROR)
class BaseTest(tf.test.TestCase):
"""Tests for Wide Deep model."""
@classmethod
def setUpClass(cls): # pylint: disable=invalid-name
super(BaseTest, cls).setUpClass()
train_higgs.define_train_higgs_flags()
def setUp(self):
# Create temporary CSV file
self.data_dir = self.get_temp_dir()
data = pd.read_csv(
TEST_CSV, dtype=np.float32, names=["c%02d" % i for i in range(29)]
).as_matrix()
self.input_npz = os.path.join(self.data_dir, train_higgs.NPZ_FILE)
# numpy.savez doesn't take gfile.Gfile, so need to write down and copy.
tmpfile = tempfile.NamedTemporaryFile()
np.savez_compressed(tmpfile, data=data)
tf.gfile.Copy(tmpfile.name, self.input_npz)
def test_read_higgs_data(self):
"""Tests read_higgs_data() function."""
# Error when a wrong data_dir is given.
with self.assertRaisesRegexp(RuntimeError, "Error loading data.*"):
train_data, eval_data = train_higgs.read_higgs_data(
self.data_dir + "non-existing-path",
train_start=0, train_count=15, eval_start=15, eval_count=5)
# Loading fine with the correct data_dir.
train_data, eval_data = train_higgs.read_higgs_data(
self.data_dir,
train_start=0, train_count=15, eval_start=15, eval_count=5)
self.assertEqual((15, 29), train_data.shape)
self.assertEqual((5, 29), eval_data.shape)
def test_make_inputs_from_np_arrays(self):
"""Tests make_inputs_from_np_arrays() function."""
train_data, _ = train_higgs.read_higgs_data(
self.data_dir,
train_start=0, train_count=15, eval_start=15, eval_count=5)
(input_fn, feature_names,
feature_columns) = train_higgs.make_inputs_from_np_arrays(
features_np=train_data[:, 1:], label_np=train_data[:, 0:1])
# Check feature_names.
self.assertAllEqual(feature_names,
["feature_%02d" % (i+1) for i in range(28)])
# Check feature columns.
self.assertEqual(28, len(feature_columns))
bucketized_column_type = type(
tf.feature_column.bucketized_column(
tf.feature_column.numeric_column("feature_01"),
boundaries=[0, 1, 2])) # dummy boundaries.
for feature_column in feature_columns:
self.assertIsInstance(feature_column, bucketized_column_type)
# At least 2 boundaries.
self.assertGreaterEqual(len(feature_column.boundaries), 2)
# Tests that the source column names of the bucketized columns match.
self.assertAllEqual(feature_names,
[col.source_column.name for col in feature_columns])
# Check features.
features, labels = input_fn().make_one_shot_iterator().get_next()
with tf.Session() as sess:
features, labels = sess.run((features, labels))
self.assertIsInstance(features, dict)
self.assertAllEqual(feature_names, sorted(features.keys()))
self.assertAllEqual([[15, 1]] * 28,
[features[name].shape for name in feature_names])
# Validate actual values of some features.
self.assertAllClose(
[0.869293, 0.907542, 0.798834, 1.344384, 1.105009, 1.595839,
0.409391, 0.933895, 1.405143, 1.176565, 0.945974, 0.739356,
1.384097, 1.383548, 1.343652],
np.squeeze(features[feature_names[0]], 1))
self.assertAllClose(
[-0.653674, -0.213641, 1.540659, -0.676015, 1.020974, 0.643109,
-1.038338, -2.653732, 0.567342, 0.534315, 0.720819, -0.481741,
1.409523, -0.307865, 1.474605],
np.squeeze(features[feature_names[10]], 1))
def test_end_to_end(self):
"""Tests end-to-end running."""
model_dir = os.path.join(self.get_temp_dir(), "model")
integration.run_synthetic(
main=train_higgs.main, tmp_root=self.get_temp_dir(), extra_flags=[
"--data_dir", self.data_dir,
"--model_dir", model_dir,
"--n_trees", "5",
"--train_start", "0",
"--train_count", "12",
"--eval_start", "12",
"--eval_count", "8",
],
synth=False, max_train=None)
self.assertTrue(tf.gfile.Exists(os.path.join(model_dir, "checkpoint")))
def test_end_to_end_with_export(self):
"""Tests end-to-end running."""
model_dir = os.path.join(self.get_temp_dir(), "model")
export_dir = os.path.join(self.get_temp_dir(), "export")
integration.run_synthetic(
main=train_higgs.main, tmp_root=self.get_temp_dir(), extra_flags=[
"--data_dir", self.data_dir,
"--model_dir", model_dir,
"--export_dir", export_dir,
"--n_trees", "5",
"--train_start", "0",
"--train_count", "12",
"--eval_start", "12",
"--eval_count", "8",
],
synth=False, max_train=None)
self.assertTrue(tf.gfile.Exists(os.path.join(model_dir, "checkpoint")))
self.assertTrue(tf.gfile.Exists(os.path.join(export_dir)))
if __name__ == "__main__":
tf.test.main()