forked from thomvolker/densityratio
-
Notifications
You must be signed in to change notification settings - Fork 0
/
README.qmd
352 lines (264 loc) · 12.8 KB
/
README.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
---
format: gfm
default-image-extension: ""
---
```{r, include=FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-"
)
```
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r}
#| label: logo
#| include: false
library(hexSticker)
library(ggplot2)
dbinorm <- function(x, p, dif) {
p * dnorm(x, 0, 1) + (1 - p) * dnorm(x, dif, 1)
}
dbinorm_scaled <- function(x, scaling, ...) {
dbinorm(x, ...) * scaling
}
dnorm_scaled <- function(x, scaling, ...) {
dnorm(x, ...) * scaling
}
dratio <- function(x, p, dif, mu, sd) {
dbinorm(x, p, dif) / dnorm(x, mu, sd)
}
hexSticker::sticker(
ggplot() +
stat_function(aes(col = "frac(italic(P[n](x)), italic(P[d](x)))"),
fun = dratio, args = list(p = 0.4, dif = 3, mu = 3, sd = 2),
alpha = 0.9, size = 0.9) +
stat_function(fun = dbinorm_scaled, args = list(p=0.4, dif = 3, scaling = 10),
alpha = 0.3, col = "white", size = 0.3, linetype = "dashed") +
stat_function(fun = dnorm_scaled, args = list(scaling = 10, mean = 3, sd = 2),
alpha = 0.3, col = "white", size = 0.3, linetype = "dashed") +
theme_void() +
hexSticker::theme_transparent() +
scale_color_manual(name = NULL, values = c("#d8e5e8"), labels = scales::parse_format()) +
theme(panel.background = element_rect(fill = 'transparent'),
plot.background = element_rect(fill = "transparent"),
legend.position = c(0.6, 0.58),
legend.text = element_text(colour = "white", size = 24)) +
guides(color = guide_legend(override.aes = list(linetype = 0))) +
xlim(-5, 8.6),
package = "densityratio",
p_size = 22, s_x = 1, s_y = 1, s_width = 1.4, s_height = 1.4,
h_fill = "#034e57", h_color = "#93effa", p_color = "#de0277",
p_y = 1.4,
filename = "man/figures/logo.png"
)
```
# densityratio <img src="man/figures/logo.png" align="right" alt="densratio logo" width="130"/>
<!-- badges: start -->
[![R-CMD-check](https://github.com/thomvolker/densityratio/actions/workflows/R-CMD-check.yaml/badge.svg)](https://github.com/thomvolker/densityratio/actions/workflows/R-CMD-check.yaml)
[![Lifecycle: experimental](https://img.shields.io/badge/lifecycle-experimental-orange.svg)](https://lifecycle.r-lib.org/articles/stages.html#experimental)
[![densityratio status badge](https://thomvolker.r-universe.dev/badges/densityratio)](https://thomvolker.r-universe.dev/densityratio)
[![DOI](https://zenodo.org/badge/613441108.svg)](https://zenodo.org/badge/latestdoi/613441108)
<!-- badges: end -->
## Overview
This package provides functionality to directly estimate a density ratio
$$r(x) = \frac{p_\text{nu}(x)}{p_{\text{de}}(x)},$$
without estimating the numerator and denominator density separately. Density ratio estimation serves many purposes, for example, prediction, outlier detection, change-point detection in time-series, importance weighting under domain adaptation (i.e., sample selection bias) and evaluation of synthetic data utility. The key idea is that differences between data distributions can be captured in their density ratio, which is estimated over the entire multivariate space of the data. Subsequently, the density ratio values can be used to summarize the dissimilarity between the two distributions in a discrepancy measure.
```{r}
#| echo: false
#| message: false
#| warning: false
#| fig-height: 6
#| fig-width: 10
#| out-width: 15cm
#| fig-dpi: 500
#| fig-format: svg
#| fig-align: center
set.seed(1)
library(ggplot2)
library(patchwork)
dbinorm <- function(x, p, dif) {
p * dnorm(x, 0, 1) + (1 - p) * dnorm(x, dif, 1)
}
dratio <- function(x, p, dif, mu, sd) {
dbinorm(x, p, dif) / dnorm(x, mu, sd)
}
fit <- densityratio::ulsif(
df_numerator = densityratio::numerator_data$x5,
df_denominator = densityratio::denominator_data$x5,
centers = c(densityratio::numerator_data$x5, densityratio::denominator_data$x5),
parallel = TRUE,
nthreads = 14
)
ggplot() +
stat_function(aes(col = factor(1, labels = "italic(P[n](x))")),
fun = dbinorm, args = list(p = 0.4, dif = 3),
size = 1) +
stat_function(aes(col = factor(2, labels = "italic(P[d](x))")),
fun = dnorm, args = list(mean = 3, sd = 2),
size = 1) +
xlim(-5, 8.6) +
scale_color_manual(name = NULL,
values = c("#93effa", "#034e57"),
labels = scales::parse_format()) +
theme_classic() +
hexSticker::theme_transparent() +
theme(legend.position = c(0.9, 0.9),
text = element_text(size = 20),
panel.background = element_rect(fill = 'transparent'),
plot.background = element_rect(fill = "transparent")) +
xlab(expression(italic(x))) +
ylab(NULL) +
ggplot() +
stat_function(aes(col = "italic(r(x))"),
fun = dratio, args = list(p = 0.4, dif = 3, mu = 3, sd = 2),
size = 1) +
geom_line(aes(x = seq(-5, 8.6, length.out = 100),
y = predict(fit, seq(-5, 8.6, length.out = 100)),
col = "italic(hat(r)(x))"),
size = 1) +
xlim(-5, 8.6) +
theme_classic() +
hexSticker::theme_transparent() +
scale_color_manual(name = NULL,
values = c("pink", "#de0277"),
labels = scales::parse_format()) +
theme(legend.position = c(0.9, 0.9),
text = element_text(size = 20),
panel.background = element_rect(fill = 'transparent'),
plot.background = element_rect(fill = "transparent")) +
xlab(expression(italic(x))) +
ylab(NULL)
```
### Features
* __Fast__: Computationally intensive code is executed in `C++` using `Rcpp` and `RcppArmadillo`.
* __Automatic__: Good default hyperparameters that can be optimized in cross-validation (we do recommend understanding those parameters before using `densityratio` in practice).
* __Complete__: Several density ratio estimation methods, such as unconstrained least-squares importance fitting (`ulsif()`), Kullback-Leibler importance estimation procedure (`kliep()`), ratio of estimated densities (`naive()`), ratio of estimated densities after dimension reduction (`naivesubspace()`), and least-squares heterodistributional subspace search (`lhss()`; experimental).
* __User-friendly__: Simple user interface, default `predict()`, `print()` and `summary()` functions for all density ratio estimation methods; built-in data sets for quick testing.
## Installation
You can install the development version of `densityratio` from [R-universe](https://r-universe.dev/search/) with:
``` r
install.packages('densityratio', repos = 'https://thomvolker.r-universe.dev')
```
## Usage
The package contains several functions to estimate the density ratio between the numerator data and the denominator data. To illustrate the functionality, we make use of the in-built simulated data sets `numerator_data` and `denominator_data`, that both consist of the same five variables.
### Minimal example
```{r}
#| label: example-univ
library(densityratio)
head(numerator_data)
set.seed(1)
fit <- ulsif(
df_numerator = numerator_data$x5,
df_denominator = denominator_data$x5,
nsigma = 5,
nlambda = 5
)
class(fit)
```
We can ask for the `summary()` of the estimated density ratio object, that contains the optimal kernel weights (optimized using cross-validation) and a measure of discrepancy between the numerator and denominator densities.
```{r}
summary(fit)
```
To formally evaluate whether the numerator and denominator densities differ significantly, you can perform a two-sample homogeneity test as follows.
```{r}
summary(fit, test = TRUE)
```
The probability that numerator and denominator samples share a common data generating mechanism is very small.
The `ulsif`-object also contains the (hyper-)parameters used in estimating the density ratio, such as the centers used in constructing the Gaussian kernels (`fit$centers`), the different bandwidth parameters (`fit$sigma`) and the regularization parameters (`fit$lambda`).
Using these variables, we can obtain the estimated density ratio using `predict()`.
```{r}
#| label: plot-univ
#| fig-height: 6
#| fig-width: 10
#| out-width: 15cm
#| fig-dpi: 500
#| fig-format: svg
#| fig-align: "center"
# obtain predictions for the numerator samples
newx5 <- seq(from = -3, to = 6, by = 0.05)
pred <- predict(fit, newdata = newx5)
ggplot() +
geom_point(aes(x = newx5, y = pred, col = "ulsif estimates")) +
stat_function(mapping = aes(col = "True density ratio"),
fun = dratio,
args = list(p = 0.4, dif = 3, mu = 3, sd = 2),
size = 1) +
theme_classic() +
scale_color_manual(name = NULL, values = c("#de0277", "purple")) +
theme(legend.position = c(0.8, 0.9),
text = element_text(size = 20))
```
### Scaling
By default, all functions in the `densityratio` package standardize the data to the numerator means and standard deviations. This is done to ensure that the importance of each variable in the kernel estimates is not dependent on the scale of the data. By setting `scale = "denominator"` one can scale the data to the means and standard deviations of the denominator data, and by setting `scale = FALSE` the data remains on the original scale.
### Categorical data
All of the functions in the `densityratio` package accept categorical variables types. However, note that internally, these variables are one-hot encoded, which can lead to a high-dimensional feature-space.
```{r}
#| error: true
summary(numerator_data$x1)
summary(denominator_data$x1)
fit_cat <- ulsif(
df_numerator = numerator_data$x1,
df_denominator = denominator_data$x1
)
aggregate(
predict(fit_cat) ~ numerator_data$x1,
FUN = unique
)
table(numerator_data$x1) / table(denominator_data$x1)
```
This transformation can give a reasonable estimate of the ratio of proportions in the different data sets (although there is some regularization applied such that the estimated odds are closer to one than seen in the real data).
### Full data example
After transforming all variables to numeric variables, it is possible to calculate the density ratio over the entire multivariate space of the data.
```{r}
fit_all <- ulsif(
df_numerator = numerator_data,
df_denominator = denominator_data
)
summary(fit_all, test = TRUE, parallel = TRUE)
```
### Other density ratio estimation functions
Besides `ulsif()`, the package contains several other functions to estimate a density ratio.
* `naive()` estimates the numerator and denominator densities separately, and subsequently takes there ratio.
* `kliep()` estimates the density ratio directly through the Kullback-Leibler importance estimation procedure.
<!-- * `kmm()` estimates the density ratio for the denominator sample points only through kernel mean matching. -->
```{r}
#| label: plot-methods
#| fig-height: 6
#| fig-width: 10
#| out-width: 15cm
#| fig-dpi: 500
#| fig-format: svg
#| fig-align: "center"
set.seed(1)
fit_naive <- naive(
df_numerator = numerator_data$x5,
df_denominator = denominator_data$x5
)
fit_kliep <- kliep(
df_numerator = numerator_data$x5,
df_denominator = denominator_data$x5
)
pred_naive <- predict(fit_naive, newdata = newx5)
pred_kliep <- predict(fit_kliep, newdata = newx5)
ggplot(data = NULL, aes(x = newx5)) +
geom_point(aes(y = pred, col = "ulsif estimates")) +
geom_point(aes(y = pred_naive, col = "naive estimates")) +
geom_point(aes(y = pred_kliep, col = "kliep estimates")) +
stat_function(aes(x = NULL, col = "True density ratio"),
fun = dratio, args = list(p = 0.4, dif = 3, mu = 3, sd = 2),
size = 1) +
theme_classic() +
scale_color_manual(name = NULL, values = c("pink", "#512970","#de0277", "purple")) +
theme(legend.position = c(0.8, 0.9),
text = element_text(size = 20))
```
The figure directly shows that `ulsif()` and `kliep()` come rather close to the true density ratio function in this example, and outperform the `naive()` solution.
## Contributions
This package is still in development, and I'll be happy to take feedback and suggestions. Please submit these through [GitHub Issues](https://github.com/thomvolker/densityratio/issues).
## Resources
__Books__
* General information about the density ratio estimation framework: Sugiyama, Suzuki and Kanamori (2012). [Density Ratio Estimation in Machine Learning](https://www.cambridge.org/core/books/density-ratio-estimation-in-machine-learning/BCBEA6AEAADD66569B1E85DDDEAA7648)
__Papers__
* Density ratio estimation for the evaluation of the utility of synthetic data: Volker, De Wolf and Van Kesteren (2023). [Assessing the utility of synthetic data: A density ratio perspective](https://unece.org/statistics/documents/2023/08/working-documents/assessing-utility-synthetic-data-density-ratio)
## How to cite
Volker, T.B. (2023). densityratio: Distribution comparison through density ratio estimation. <https://doi.org/10.5281/zenodo.8307819>