We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
${\rightarrow}$ 개인마다 처치에 다르게 반응하는 "이질적 효과"를 고려해 조건부 처치 평균 효과(Conditional average treatment effect ; CATE) 및 이질적 처치 효과(Heterogeneous treatment effect ; HTE)를 추정해보자!
TMI) 메타몽이 여러 형태로 변할 수 있듯이, CATE를 추정하기 위해 사용하는 base-learner들이 여러 형태를 띌 수 있어 "메타 러너"라는 이름을 가지게 되었다고 합니다.
The text was updated successfully, but these errors were encountered:
jiyeon0822
eun-kyoung113
No branches or pull requests
0. Overview
1. CATE 및 HTE의 정의
2. 메타 러너(Meta-learner)
TMI) 메타몽이 여러 형태로 변할 수 있듯이, CATE를 추정하기 위해 사용하는 base-learner들이 여러 형태를 띌 수 있어 "메타 러너"라는 이름을 가지게 되었다고 합니다.
2-1. S-learner
2-2. T-learner
2-3. X-learner
2-4. R-learner
3. Metrics for Heterogeneous effect estimation
4. Applications
4-1. Using uplift modeling for consumer personalization and targeting
4-2. Social Pressure and voter turnout
5. Special case - Multiple treatment groups
5-1. Meta-learners for multiple treatment groups
5-2. Meta-learners for multiple treatment groups with different costs
5-3. Net value optimization for multiple treatment groups with different costs
The text was updated successfully, but these errors were encountered: