title |
---|
Create and Populate a Dataset |
💡 Consider uploading a CSV directly from the UI.
In this Python example, you will learn how to create a Dataset and populate it with example items. We will create items from a list of values. If you want to create a Dataset from existing Runs, Steps or Generations from production data, check the API reference (Python, TypeScript).
Let's create a dataset consisting of questions and answers to movie titles.
from literalai import LiteralClient
import os
literalai_client = LiteralClient(api_key=os.getenv("LITERAL_API_KEY"))
Before we can add items to a Dataset, we need to create one.
dataset = literalai_client.api.create_dataset(
name = "movie_titles",
description = "Gold standard dataset of movie title q&a",
type = "key_value"
)
Next, we add local items to this dataset
# example items
items = [
{"input": "A movie about love", "expected_output": "Love Actually"},
{"input": "A movie about space travel", "expected_output": "Interstellar"},
{"input": "A movie about science fiction", "expected_output": "Dune"},
{"input": "A movie about superheroes", "expected_output": "The Avengers"},
{"input": "A movie about adventure", "expected_output": "The Lord of the Rings"},
{"input": "A movie about vikings", "expected_output": "Vikings"},
]
# upload to Literal AI
for item in items:
literalai_client.api.create_dataset_item(
dataset_id = dataset.id,
input = { "content": item["input"] },
expected_output = { "content": item["expected_output"] }
)