forked from llmware-ai/llmware
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdragon_gguf_fast_start.py
75 lines (51 loc) · 2.35 KB
/
dragon_gguf_fast_start.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
"""This example demonstrates running a 7B RAG-instruct fine-tuned DRAGON model locally on a laptop.
This example uses the RAG Benchmark test set, which can be pulled down from the LLMWare repository on
Huggingface at: www.huggingface.co/llmware/rag_instruct_benchmark_tester, or by using the
datasets library, which can be installed with:
`pip3 install datasets`
"""
import time
from llmware.prompts import Prompt
from llmware.exceptions import LLMWareException
from importlib import util
if not util.find_spec("datasets"):
raise LLMWareException(message="\nto run this example, you need to install HuggingFace datasets: "
"`pip3 install datasets`")
try:
from datasets import load_dataset
except:
raise LLMWareException(message="Exception: datasets not found and required for example.")
# Pull a 200 question RAG benchmark test dataset from llmware HuggingFace repo
def load_rag_benchmark_tester_dataset():
dataset_name = "llmware/rag_instruct_benchmark_tester"
print(f"\n > Loading RAG dataset '{dataset_name}'...")
dataset = load_dataset(dataset_name)
test_set = []
for i, samples in enumerate(dataset["train"]):
test_set.append(samples)
return test_set
# Run the benchmark test
def run_test(model_name, prompt_list):
print(f"\n > Loading model '{model_name}'")
prompter = Prompt().load_model(model_name)
print(f"\n > Running RAG Benchmark Test against '{model_name}' - 200 questions")
for i, entry in enumerate(prompt_list):
start_time = time.time()
prompt = entry["query"]
context = entry["context"]
response = prompter.prompt_main(prompt, context=context, prompt_name="default_with_context", temperature=0.3)
# Print results
time_taken = round(time.time() - start_time, 2)
print("\n")
print(f"{i + 1}. llm_response - {response['llm_response']}")
print(f"{i + 1}. gold_answer - {entry['answer']}")
print(f"{i + 1}. time_taken - {time_taken}")
return 0
if __name__ == "__main__":
ds = load_rag_benchmark_tester_dataset()
# Supported Q4_K_M GGUF Dragon Models:
# -- llmware/dragon-yi-6b-gguf
# -- llmware/dragon-mistral-7b-gguf
# -- llmware/dragon-llama-7b-gguf
model_name = "llmware/dragon-yi-6b-gguf"
output = run_test(model_name,ds)