forked from LLM-Dev-Open/opencompass_base
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_llama_7b_test.py
45 lines (37 loc) · 2.06 KB
/
eval_llama_7b_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
from mmengine.config import read_base
with read_base():
from .configs.lark import lark_bot_url
########################DATASET##################
# Standard Benchmarks
from .configs.datasets.SuperGLUE_BoolQ.SuperGLUE_BoolQ_ppl import BoolQ_datasets
from .configs.datasets.piqa.piqa_ppl import piqa_datasets
from .configs.datasets.siqa.siqa_ppl import siqa_datasets
from .configs.datasets.hellaswag.hellaswag_ppl import hellaswag_datasets
from .configs.datasets.winogrande.winogrande_ppl import winogrande_datasets
from .configs.datasets.ARC_e.ARC_e_ppl import ARC_e_datasets
from .configs.datasets.ARC_c.ARC_c_ppl import ARC_c_datasets
from .configs.datasets.obqa.obqa_ppl import obqa_datasets
from .configs.datasets.commonsenseqa.commonsenseqa_ppl_e51e32 import commonsenseqa_datasets
from .configs.datasets.mmlu.mmlu_ppl import mmlu_datasets
# Code Generation
from .configs.datasets.humaneval.humaneval_gen import humaneval_datasets
from .configs.datasets.mbpp.mbpp_gen import mbpp_datasets
# World Knowledge need NaturalQuestions
from .configs.datasets.nq.nq_gen import nq_datasets
from .configs.datasets.triviaqa.triviaqa_gen import triviaqa_datasets
# Reading Comprehension need QUAC
from .configs.datasets.squad20.squad20_gen import squad20_datasets
# Exams
from .configs.datasets.gsm8k.gsm8k_gen import gsm8k_datasets
from .configs.datasets.math.math_gen import math_datasets
from .configs.datasets.TheoremQA.TheoremQA_gen import TheoremQA_datasets
# ceval and cmmlu
from .configs.datasets.ceval.ceval_ppl import ceval_datasets
from .configs.datasets.cmmlu.cmmlu_ppl import cmmlu_datasets
#########################MODEL###################
from .hf_llama_7b import models
######################SUMMERIZER#################
from .summarizer import dataset_abbrs, summary_groups
datasets = sum((v for k, v in locals().items() if k.endswith('_datasets')), [])
models = models
summarizer = dict(dataset_abbrs=dataset_abbrs, summary_groups=summary_groups, )