-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMethanation.py
242 lines (200 loc) · 12.6 KB
/
Methanation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
# Modell TKA-Mo-230203-1 (MethAmmT-V1)
# calculation of methanation chemical equilibrium by Gibbs free energy minimization
# calculation of fugacity coefficients by Soave-Redlich-Kwong EOS or ideal gas assumption
import numpy as np
from scipy.optimize import minimize
from scipy.optimize import root
import matplotlib.pyplot as plt
import pandas as pd
from ICIW_Plots import cyclers as ICIW_cyclers
import matplotlib
def dfg(T):
"""
function for determination of Gibbs free energy of formation of a species @ T from NIST-JANAF tables [4] by a polynomic fit, range of validity: 0 - 6000 K
:param T: temperature in K
:return: Gibbs free energy of formation in J / mol
"""
coeff = np.array([[ -4.4712899950965e-18, 7.69027397691646e-14, -4.83454740516897e-10, 2.06356409761266e-6, -4.28205970848287e-3, -3.93254377825293e2], # CO2
[ 0, 0, 0, 0, 0, 0], # H2
[-1.19480733487367e-16, 2.05212901276465e-12, -1.30585665138136e-8, 3.77285316328865e-5, 6.34019284855666e-2, -7.14155077436689e1], # CH4
[ 0, 1.02813542552485e-13, -1.46197827311474e-9, 7.46216055871485e-6, 4.27766908921636e-2, -2.41321516149705e2], # H2O
[ 0, 0, 0, 1.60737136748171e-6, -9.02786221059026e-2, -1.11442697976118e2], # CO
[ 0, 0, 0, 0, 0, 0], # C
[ 0, 0, 0, 0, 0, 0], # He
[ 0, 0, 0, 0, 0, 0], # Ar
[ 0, 0, 0, 0, 0, 0]]) # N2
T_poly = np.array([T**5, T**4, T**3, T**2, T, 1])
res = np.matmul(T_poly, np.transpose(coeff)) * 1000
return res
def phi_Soave(n, T, p):
"""
function for determination of fugacity coefficients of all gaseous species @ T, p from Soave-Redlich-Kwong Equation of State [3]
:param T: temperature in K
:param p: pressure in bar
:return: fugacity coefficients of CO2, H2, CH4, H2O, CO, He, Ar and N2 @ T, p in 1
"""
n_gas = np.delete(n, 5) # removing carbon (solid) from vector containing molar amounts
# parameters
R = 8.314 # universal gas constant in J / mol K
M_i = np.array([0.044, 0.002, 0.016, 0.018, 0.028, 0.004, 0.040, 0.028]) # vector containing molar masses of CO2, H2, CH4, H2O, CO, He, Ar and N2 in kg / mol
omega_i = np.array([0.224, -0.215, 0.011, 0.343, 0.048, -0.388, 0.000, 0.037]) # vector containing acentric factors of CO2, H2, CH4, H2O, CO, He, Ar and N2 in 1 [2]
T_c_i = np.array([304.2, 33.18, 190.6, 647.0, 134.45, 5.2, 150.86, 126.2]) # vector containing critical temperatures of CO2, H2, CH4, H2O, CO, He, Ar and N2 in K [2]
p_c_i = np.array([ 73.8, 13.00, 46.1, 220.6, 35, 2.274, 48.9805, 33.9]) # vector containing critical pressures of CO2, H2, CH4, H2O, CO, He, Ar and N2 in bar [2]
K_ij = np.zeros([len(n_gas), len(n_gas)]) # matrix containing SRK Binary Interaction Parameters, rows and columns CO2, H2, CH4, H2O, CO, He, Ar and N2, respectively, in 1
R_s_i = R / M_i # vector containing specific gas constants of CO2, H2, CH4, H2O, CO, He, Ar and N2 in J / kg K
T_r_i = T / T_c_i # vector containing reduced temperatures of CO2, H2, CH4, H2O, CO, He, Ar and N2 in 1
x_i = n_gas / np.sum(n_gas) # vector containing mole fractions in the gas phase of CO2, H2, CH4, H2O, CO, He, Ar and N2 in 1
R_s = np.dot(x_i, R_s_i) # average specific gas constant weighted by mole fractions in J / kg K
m_i = 0.480 + 1.574 * omega_i - 0.176 * omega_i**2 # vector containing SRK parameters m for CO2, H2, CH4, H2O, CO, He, Ar and N2 in 1
alpha_i = (1 + m_i * (1 - T_r_i**0.5))**2 # vector containing SRK parameters alpha for CO2, H2, CH4, H2O, CO, He, Ar and N2 in 1
a_i = 0.42747 * alpha_i * R_s_i**2 * T_c_i**2 / p_c_i # vector containing SRK parameters a for CO2, H2, CH4, H2O, CO, He, Ar and N2 in m^5 / s² kg
b_i = 0.08664 * R_s_i * T_c_i / p_c_i # vector containing SRK parameters b for CO2, H2, CH4, H2O, CO, He, Ar and N2 in m³ / kg
A_ij = (1-K_ij) * (np.transpose(np.ones([len(a_i), len(a_i)]) * a_i) * a_i)**0.5 # matrix containing a_ij, rows and columns CO2, H2, CH4, H2O, CO, He, Ar and N2, respectively, in 1
a = np.sum(np.diag(np.matmul(np.transpose(np.transpose(np.ones([len(x_i), len(x_i)]) * x_i) * x_i), A_ij))) # SRK parameters a of the mixture in m^5 / s² kg
b = np.dot(x_i, b_i) # SRK parameters b of the mixture in m³ / kg
A = a * p / (R_s**2 * T**2) # SRK parameters A in 1
B = b * p / (R_s * T) # SRK parameters B in 1
# calculation of Z
def Z_root(Z, A, B):
res = Z**3 - Z**2 + Z * (A - B - B**2) - A * B
return res
Z_solve = root(Z_root, np.array([1]), args = (A, B))
Z = Z_solve.x
res = np.exp((Z - 1) * b_i / b - np.log(Z - B) - A / B * (2 * a_i**0.5 / a**0.5 - b_i / b) * np.log(1 + B / Z))
res_C = np.insert(res, 5, 1) # fugacity coefficient of carbon is set to 1
return res_C
def g_T(n, T, p, type):
"""
function for determination of the total Gibbs free energy to be minimized [1, 2]
:param n: vector containing molar amounts of CO2, H2, CH4, H2O, CO, C, He, Ar and N2
:param T: temperature in K
:param p: pressure in bar
:return: total Gibbs free energy in J / mol
"""
dfgi = dfg(T) # Gibbs free energy of formation in J / mol
phii = np.ones_like(n)
n_gas = np.delete(n, 5) # removing carbon (solid) from vector containing molar amounts
if type == 'ideal gas':
phii = phii
elif type == 'real gas':
phii = phi_Soave(n, T, p)
else:
print('Please choose type of gas from given options: ideal gas or real gas')
for i in range(n.shape[0]):
if n[i] <= 0:
n[i] = 1e-20
R = 8.314 # universal gas constant in J / mol K
p0 = 1 # standard pressure in bar
C_corr = np.array([1, 1, 1, 1, 1, 0, 1, 1, 1]) # vector for removal of carbon in the gas term in G
res = np.dot(n, dfgi) + R * T * np.dot((n * C_corr), np.log(phii * p * n / (p0 * np.sum(n_gas))))
return res
# Parameter
x0 = np.empty(9)
x0[0] = 0.2 # initial mole fraction of CO2
x0[1] = 0.8-7e-20 # initial mole fraction of H2
x0[2] = 1e-20 # initial mole fraction of CH4
x0[3] = 1e-20 # initial mole fraction of H2O
x0[4] = 1e-20 # initial mole fraction of CO
x0[5] = 1e-20 # initial mole fraction of C
x0[6] = 1e-20 # initial mole fraction of He
x0[7] = 1e-20 # initial mole fraction of Ar
x0[8] = 1e-20 # initial mole fraction of N2
n0 = x0 * 1 # initial molar amount in mol
# Solving
max_C = n0[0] + n0[2] + n0[4] + n0[5] # molar amount of carbon in the system in mol
max_H = 2 * n0[1] + 4 * n0[2] + 2 * n0[3] # molar amount of hydrogen in the system in mol
max_O = 2 * n0[0] + n0[3] + n0[4] # molar amount of oxygen in the system in mol
max_He = n0[6] # molar amount of helium in the system in mol
max_Ar = n0[7] # molar amount of argon in the system in mol
max_N = n0[8] # molar amount of nitrogen in the system
max_CO2 = min(max_C, 0.5 * max_O) # maximum possible molar amount of CO2 in mol
max_H2 = 0.5 * max_H # maximum possible molar amount of H2 in mol
max_CH4 = min(max_C, 0.25 * max_H) # maximum possible molar amount of CH4 in mol
max_H2O = min(0.5 * max_H, max_O) # maximum possible molar amount of H2O in mol
max_CO = min(max_C, max_O) # maximum possible molar amount of CO in mol
max_N2 = 0.5 * max_N # maximum possible molar amount of N2 in mol
bnds = ((0, max_CO2), (0, max_H2), (0, max_CH4), (0, max_H2O), (0, max_CO), (0, max_C), (0, max_He), (0, max_Ar), (0, np.inf))
init = np.ones_like(n0)
def element_balance(n, n0):
"""
function for checking the element balance as a constraint for the minimization
:param n0: vector containing initial molar amounts of CO2, H2, CH4, H2O, CO, C, He, Ar and N2
:return: residual -> 0
"""
# element-species matrix (C, O, H, He, Ar, N)
A = np.array([[1, 2, 0, 0, 0, 0], # CO2
[0, 0, 2, 0, 0, 0], # H2
[1, 0, 4, 0, 0, 0], # CH4
[0, 1, 2, 0, 0, 0], # H2O
[1, 1, 0, 0, 0, 0], # CO
[1, 0, 0, 0, 0, 0], # C
[0, 0, 0, 1, 0, 0], # He
[0, 0, 0, 0, 1, 0], # Ar
[0, 0, 0, 0, 0, 2]]) # N2
res = np.matmul(n, A) - np.matmul(n0, A)
return res
cons = {'type': 'eq', 'fun': element_balance, 'args': [n0]}
# validation [1]
p = np.array([1.01325]) # p in bar
T = np.linspace(200 + 273.15, 800 + 273.15, 25) # T in K
type = 'real gas' # choose type of gas from 'ideal gas' and 'real gas'
x = np.ones([p.shape[0], T.shape[0], n0.shape[0]])
for i in range(p.shape[0]):
for j in range(T.shape[0]):
if np.sum(x0) != 1:
print('Please check specified inlet composition!')
else:
sol = minimize(g_T, init, args=(T[j], p[i], type), method='SLSQP', bounds=bnds, constraints = cons, options = {'disp': 'True', 'maxiter': 1000, 'ftol': 1e-12})
n = sol.x
x[i, j] = n / np.sum(n)
print(sol.success)
if round(np.sum(n / np.sum(n)), 5) != 1:
print('Error at ', p, 'bar and ', T, 'K!')
if sol.success == False:
sol = minimize(g_T, x[i, j - 1], args=(T[j], p[i], type), method='SLSQP', bounds=bnds, constraints=cons, options={'disp': 'True', 'maxiter': 1000, 'ftol': 1e-12})
n = sol.x
x[i, j] = n / np.sum(n)
print(sol.success)
print(x[i, j], '(', T[j], ')')
# data import - validation data [1]
csv_data_Gao = pd.read_csv('data_Gao_CO2.csv', # read csv file
sep = ';')
# convert read data into numpy array
data_Gao = csv_data_Gao.to_numpy()
T_CO2_Gao = data_Gao[:, 0]
x_CO2_Gao = data_Gao[:, 1:7]
plt.style.use('ICIWstyle')
font = {'size': 10}
matplotlib.rc('font', **font)
# CO2 methanation
fig, axs = plt.subplots()
cyc1 = ICIW_cyclers.ICIW_colormap_cycler('hsv', 9, start = 0.1, stop = 1)
axs.set_prop_cycle(cyc1)
axs.plot(T - 273.15, x[0, :, 0], '-', label = 'CO$_2$')
axs.plot(T - 273.15, x[0, :, 1], '-', label = 'H$_2$')
axs.plot(T - 273.15, x[0, :, 2], '-', label = 'CH$_4$')
axs.plot(T - 273.15, x[0, :, 3], '-', label = 'H$_2$O')
axs.plot(T - 273.15, x[0, :, 4], '-', label = 'CO')
axs.plot(T - 273.15, x[0, :, 5], '-', label = 'C')
axs.plot(T - 273.15, x[0, :, 6], '-', label = 'He')
axs.plot(T - 273.15, x[0, :, 7], '-', label = 'Ar')
axs.plot(T - 273.15, x[0, :, 8], '-', label = 'N$_2$')
axs.plot(T_CO2_Gao, x_CO2_Gao[:, 0], 'o', markersize = 3, label = 'CO$_2$ (Gao)')
axs.plot(T_CO2_Gao, x_CO2_Gao[:, 1], 'o', markersize = 3, label = 'H$_2$ (Gao)')
axs.plot(T_CO2_Gao, x_CO2_Gao[:, 2], 'o', markersize = 3, label = 'CH$_4$ (Gao)')
axs.plot(T_CO2_Gao, x_CO2_Gao[:, 3], 'o', markersize = 3, label = 'H$_2$O (Gao)')
axs.plot(T_CO2_Gao, x_CO2_Gao[:, 4], 'o', markersize = 3, label = 'CO (Gao)')
axs.plot(T_CO2_Gao, x_CO2_Gao[:, 5], 'o', markersize = 3, label = 'C (Gao)')
axs.set_xlabel('$\mathit{T}$ / °C')
axs.set_ylabel('$\mathit{x}_{\mathit{i}}$ / 1')
axs.set_title('Equilibrium composition, H$_2$ / CO$_2$ = 4, 1 atm')
axs.set_ylim(0, 0.8)
axs.set_xlim(200, 800)
plt.legend(bbox_to_anchor=(1,1), loc="upper left", fontsize = 8)
plt.tight_layout()
plt.show()
# References
# [1] J. Gao, Y. Wang, Y. Ping, D. Hu, G. Xu, F. Gu and F. Su, RSC Adv. 2 (2012) 2358-2368. doi:10.1039/c2ra00632d
# [2] R.H. Perry (Ed.), Perry's chemical engineers' handbook, 7th ed., McGraw-Hill, Montréal, 1997.
# [3] G. Soave, Chem. Eng. Sci. 27 (1972) 1197–1203. doi: 10.1016/0009-2509(72)80096-4.
# [4] T.C. Allison, NIST-JANAF Thermochemical Tables - SRD 13, 2013 (accessed 16 November 2022). doi: 10.18434/T42S31