-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathmain_IRT.py
executable file
·243 lines (209 loc) · 13.3 KB
/
main_IRT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import time
import scipy.io
import tensorflow as tf
import tf_slim as slim
import numpy as np
from glob import glob
import scipy.misc as sic
import subprocess
import models.network as net
import argparse
import utils.utils as utils
import random
import sys
from art import text2art
import GPUtil
from pathlib import Path
from PIL import Image
from prodict import Prodict
parser = argparse.ArgumentParser()
parser.add_argument("--model", default='Test', type=str, help="Name of model")
parser.add_argument("--save_freq", default=5, type=int, help="save frequency of epochs")
parser.add_argument("--use_gpu", default=1, type=int, help="use gpu or not")
parser.add_argument("--with_IRT", default=0, type=int, help="use IRT or not")
parser.add_argument("--IRT_initialization", default=0, type=int, help="use initialization for IRT or not")
parser.add_argument("--max_epoch", default=25, type=int, help="The max number of epochs for training")
parser.add_argument("--input", default='None', type=str, help="dir of input images")
parser.add_argument("--processed", default='None', type=str, help="dir of processed images")
parser.add_argument("--output", default='None', type=str, help="dir of output images")
parser.add_argument("--format", default='png', type=str, help="format of output image")
seed = 2020
np.random.seed(seed)
tf.set_random_seed(seed)
random.seed(seed)
ARGS = parser.parse_args()
print("ARGS:{}".format(ARGS))
save_freq = ARGS.save_freq
input_folder = ARGS.input
processed_folder = ARGS.processed
with_IRT = ARGS.with_IRT
maxepoch = ARGS.max_epoch + 1
model= ARGS.model
task = "{}_IRT{}_initial{}".format(model, with_IRT, ARGS.IRT_initialization) #Colorization, HDR, StyleTransfer, Dehazing
fmt = Prodict(jpg = {'ext':'.jpg', 'format':'JPEG'}, png = {'ext':'.png', 'format':'PNG'})
cur_fmt = fmt[ARGS.format]
print(text2art("TOP LEVEL VARS"))
print("Top level vars: save_freq:{}, input_folder:{}, processed_folder:{}, with_IRT:{}, maxepoch:{}, model:{}, task:{}".format(
save_freq, input_folder, processed_folder, with_IRT, maxepoch, model, task))
def compute_error(real,fake):
return tf.reduce_mean(tf.abs(fake-real))
def Lp_loss(x, y):
vgg_real = utils.build_vgg19(x*255.0)
vgg_fake = utils.build_vgg19(y*255.0,reuse=True)
p0=compute_error(vgg_real['input']/255.0,vgg_fake['input']/255.0)
p1=compute_error(vgg_real['conv1_2']/255.0,vgg_fake['conv1_2']/255.0)/2.6
p2=compute_error(vgg_real['conv2_2']/255.0,vgg_fake['conv2_2']/255.0)/4.8
p3=compute_error(vgg_real['conv3_2']/255.0,vgg_fake['conv3_2']/255.0)/3.7
p4=compute_error(vgg_real['conv4_2']/255.,vgg_fake['conv4_2']/255.)/5.6
p5=compute_error(vgg_real['conv5_2']/255.,vgg_fake['conv5_2']/255.)*10/1.5
return p0+p1+p2+p3+p4+p5
def prepare_paired_input(task, id, input_names, processed_names, is_train=0):
net_in = np.float32(scipy.misc.imread(input_names[id]))/255.0
if len(net_in.shape) == 2:
net_in = np.tile(net_in[:,:,np.newaxis], [1,1,3])
net_gt = np.float32(scipy.misc.imread(processed_names[id]))/255.0
org_h,org_w = net_in.shape[:2]
h = org_h // 32 * 32
w = org_w // 32 * 32
print("\r\tnet_in.shape:{} - net_gt.shape:{}".format(net_in.shape, net_gt.shape))
return net_in[np.newaxis, :h, :w, :], net_gt[np.newaxis, :h, :w, :]
if ARGS.use_gpu:
os.environ["CUDA_VISIBLE_DEVICES"]=str(np.argmax([int(x.split()[2])
for x in subprocess.Popen("nvidia-smi -q -d Memory | grep -A4 GPU | grep Free", shell=True, stdout=subprocess.PIPE).stdout.readlines()]))
else:
os.environ["CUDA_VISIBLE_DEVICES"] = ''
# Below is an alternative way to get access to GPUs, which would allow multiple GPU usage. Method above always chooses the single GPU with the most available memory.
# That said, this code would need a lot of refactoring to leverage multiple GPUs. But it would be good, as it's hard not to run out of memory.
# GPUtil.showUtilization(all=True) #https://github.com/anderskm/gputil
# deviceIDs = GPUtil.getAvailable(order = 'first', limit = 2, maxLoad = 0.5, maxMemory = 0.5, includeNan=True)
# print("deviceIDs:{}".format(deviceIDs))
# os.environ["CUDA_VISIBLE_DEVICES"] = str(deviceIDs)
# print("os.environ[\"CUDA_VISIBLE_DEVICES\"]:{}".format(os.environ["CUDA_VISIBLE_DEVICES"]))
config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=True)
config.gpu_options.allow_growth=True
sess=tf.Session(config=config)
input_i = tf.placeholder(tf.float32, shape=[None,None,None,3])
input_target = tf.placeholder(tf.float32, shape=[None,None,None,3])
lossDict = {}
objDict={}
with tf.variable_scope(tf.get_variable_scope()):
frame_input = input_i[:, :, :, 0:3]
frame_processed = input_target[:, :, :, 0:3]
with tf.variable_scope('individual'):
if not with_IRT:
frame_out = net.VCN(frame_input, reuse=False)
lossDict["total"] = Lp_loss(frame_out, frame_processed)
else:
net_pred=net.VCN(frame_input, output_channel=6, reuse=False)
frame_out = net_pred[...,0:3]
frame_out_minor = net_pred[...,3:6]
diff_map = tf.reduce_max(tf.abs(frame_out - frame_processed) / (frame_input + 1e-1), axis=3, keep_dims=True)
diff_map1 = tf.reduce_max(tf.abs(frame_out_minor - frame_processed) / (frame_input + 1e-1), axis=3, keep_dims=True)
confidence_map = tf.tile(tf.cast(tf.less(diff_map, diff_map1), tf.float32), [1,1,1,3])
lossDict["total"] = tf.reduce_mean(tf.abs(frame_out - frame_processed)) + 0.9 * tf.reduce_mean(tf.abs(frame_out_minor - frame_processed))
lossDict["confidence_map"] = tf.reduce_mean(tf.abs(frame_out - frame_processed) * confidence_map) + tf.reduce_mean(tf.abs(frame_out_minor - frame_processed) * (-confidence_map + 1.0))
opt=tf.train.AdamOptimizer(learning_rate=0.0001).minimize(lossDict["total"], var_list=[var for var in tf.trainable_variables()])
if with_IRT:
opt_IRT=tf.train.AdamOptimizer(learning_rate=0.0001).minimize(lossDict["confidence_map"], var_list=[var for var in tf.trainable_variables()])
# If you want to test a sequence of videos, please modify the following two lines.
input_folders = [input_folder]
processed_folders = [processed_folder]
for folder_idx, input_folder in enumerate(input_folders):
input_names = sorted(glob(input_folders[folder_idx] + "/*"))
processed_names = sorted(glob(processed_folders[folder_idx] + "/*"))
print("input_names:{}, processed_names:{}".format(input_names, processed_names))
if ARGS.output == "None":
output_folder = "result/{}".format(task + '/' + input_folder.split("/")[-2] + '/' + input_folder.split("/")[-1])
else:
output_folder = ARGS.output + "/" + task + '/' + input_folder.split("/")[-1]
print(text2art("CHECK PATHS"))
print("output_folder:{}, input_folders[folder_idx]:{}, processed_folders[folder_idx]:{}".format(output_folder, input_folders[folder_idx], processed_folders[folder_idx]))
var_restore = [v for v in tf.trainable_variables()]
assert len(input_names) == len(processed_names), "The number of frames is unequal:{}".format(len(input_names) == len(processed_names))
num_of_sample = min(len(input_names), len(processed_names))
data_in_memory = [None] * num_of_sample #Speedup
for id in range(min(len(input_names), len(processed_names))): #Speedup
net_in,net_gt = prepare_paired_input(task, id, input_names, processed_names) #Speedup
data_in_memory[id] = [net_in,net_gt] #Speedup
sess.run([tf.global_variables_initializer()])
step = 0
for epoch in range(1,maxepoch):
print("Processing epoch: {}, num_of_sample:{}".format(epoch, num_of_sample))
frame_id = 0
if os.path.isdir("{}/{:04d}".format(output_folder, epoch)):
print("ISDIR, continuing")
continue
else:
print("NO DIR, mkdir")
os.makedirs("{}/{:04d}".format(output_folder, epoch))
if not os.path.isdir("{}/training".format(output_folder)):
print("NO TRAINING DIR, mkdir")
os.makedirs("{}/training".format(output_folder))
for id in range(num_of_sample): #range(80):#(min(len(input_names), len(processed_names))):
if with_IRT:
print("WITH IRT, id:{}".format(id))
if epoch < 6 and ARGS.IRT_initialization:
print("WITH IRT 1, id:{}".format(id))
net_in,net_gt = data_in_memory[0] #Option:
_, out_img, crt_loss = sess.run([opt, frame_out, lossDict["total"]], feed_dict={input_i:net_in, input_target:net_gt})
else:
print("WITH IRT 2, id:{}".format(id))
net_in,net_gt = data_in_memory[id]
_, out_img, crt_loss = sess.run([opt_IRT, frame_out, lossDict["confidence_map"]], feed_dict={input_i:net_in, input_target:net_gt})
else:
print("NO IRT, id:{}".format(id))
net_in,net_gt = data_in_memory[id]
_, out_img, crt_loss = sess.run([opt, frame_out, lossDict["total"]], feed_dict={input_i:net_in, input_target:net_gt})
frame_id+=1
step+=1
if step % 10 == 0:
print("Epoch:{}, frame_id{}, step:{}, loss: {:.4f}, step % 10: {}, step % 100: {}".format(epoch, frame_id, step, crt_loss, step % 10, step % 100))
if step % 100 == 0 :
tr_path = "{}/training/step{:06d}_{:06d}{}".format(output_folder, step, id, cur_fmt.ext)
tr_img_array = np.uint8(np.concatenate([net_in[0], out_img[0], net_gt[0]], axis=1).clip(0,1) * 255.0)
print("Saving training image to training_path:{}, uint_8:{}".format(tr_path, tr_img_array))
# https://stackoverflow.com/a/47292141/869838 - subsampling and quality settings are available if we use Pillow directly, rather than through scipy wrapper
# sic.imsave(training_path, training_img_array)
Image.fromarray(tr_img_array).save(tr_path, format=cur_fmt.format, subsampling=0, quality=100)
print("num_of_sample:{}".format(num_of_sample))
# PIL MODES, for reference - impacts quality of saved image
# * 'L' (8-bit pixels, black and white)
# * 'P' (8-bit pixels, mapped to any other mode using a color palette)
# * 'RGB' (3x8-bit pixels, true color)
# * 'RGBA' (4x8-bit pixels, true color with transparency mask)
# * 'CMYK' (4x8-bit pixels, color separation)
# * 'YCbCr' (3x8-bit pixels, color video format)
# * 'I' (32-bit signed integer pixels)
# * 'F' (32-bit floating point pixels)
if epoch % save_freq == 0:
for id in range(num_of_sample):
st=time.time()
net_in,net_gt = data_in_memory[id]
print("Test: {}-{} \r".format(id, num_of_sample))
if with_IRT:
out_img, out_img1, crt_confidence_map = sess.run([frame_out, frame_out_minor, confidence_map], feed_dict={input_i:net_in, input_target:net_gt})
# https://stackoverflow.com/a/47292141/869838 - subsampling and quality settings are available if we use Pillow directly, rather than through scipy wrapper
Image.fromarray(np.uint8(np.concatenate([net_in[0,:,:,:3],out_img[0], out_img1[0],net_gt[0], crt_confidence_map[0]], axis=1).clip(0,1) * 255.0)).save(
"{}/{:04d}/predictions_{:05d}{}".format(output_folder, epoch, id, cur_fmt.ext),
format=cur_fmt.format, subsampling=0, quality=100)
Image.fromarray(np.uint8(out_img[0].clip(0,1) * 255.0)).save(
"{}/{:04d}/out_main_{:05d}{}".format(output_folder, epoch, id, cur_fmt.ext),
format=cur_fmt.format, subsampling=0, quality=100)
Image.fromarray(np.uint8(out_img1[0].clip(0,1) * 255.0)).save(
"{}/{:04d}/out_minor_{:05d}{}".format(output_folder, epoch, id, cur_fmt.ext),
format=cur_fmt.format, subsampling=0, quality=100)
print("Save:IRT: id:{} - output_folder:{} \r".format(id, output_folder))
else:
out_img = sess.run(frame_out, feed_dict={input_i:net_in, input_target:net_gt})
# https://stackoverflow.com/a/47292141/869838 - subsampling and quality settings are available if we use Pillow directly, rather than through scipy wrapper
Image.fromarray(np.uint8(np.concatenate([net_in[0,:,:,:3], out_img[0], net_gt[0]],axis=1).clip(0,1) * 255.0)).save(
"{}/{:04d}/predictions_{:05d}{}".format(output_folder, epoch, id, cur_fmt.ext),
format=cur_fmt.format, subsampling=0, quality=100)
Image.fromarray(np.uint8(out_img[0].clip(0,1) * 255.0)).save(
"{}/{:04d}/out_main_{:05d}{}".format(output_folder, epoch, id, cur_fmt.ext),
format=cur_fmt.format, subsampling=0, quality=100)
print("Save:NO IRT: id:{} - output_folder:{}".format(id, output_folder))