-
Notifications
You must be signed in to change notification settings - Fork 125
/
Copy pathxt_FULLCONENAT.c
733 lines (577 loc) · 22.2 KB
/
xt_FULLCONENAT.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
/*
* Copyright (c) 2018 Chion Tang <tech@chionlab.moe>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/version.h>
#include <linux/types.h>
#include <linux/list.h>
#include <linux/hashtable.h>
#include <linux/netdevice.h>
#include <linux/inetdevice.h>
#include <linux/workqueue.h>
#ifdef CONFIG_NF_CONNTRACK_CHAIN_EVENTS
#include <linux/notifier.h>
#endif
#include <linux/netfilter.h>
#include <linux/netfilter_ipv4.h>
#include <linux/netfilter/x_tables.h>
#include <net/netfilter/nf_nat.h>
#include <net/netfilter/nf_conntrack.h>
#include <net/netfilter/nf_conntrack_zones.h>
#include <net/netfilter/nf_conntrack_tuple.h>
#include <net/netfilter/nf_conntrack_core.h>
#include <net/netfilter/nf_conntrack_ecache.h>
#define HASH_2(x, y) ((x + y) / 2 * (x + y + 1) + y)
#define HASHTABLE_BUCKET_BITS 10
#ifndef NF_NAT_RANGE_PROTO_RANDOM_FULLY
#define NF_NAT_RANGE_PROTO_RANDOM_FULLY (1 << 4)
#endif
#if LINUX_VERSION_CODE < KERNEL_VERSION(4, 10, 0)
static inline int nf_ct_netns_get(struct net *net, u8 nfproto) { return 0; }
static inline void nf_ct_netns_put(struct net *net, u8 nfproto) {}
static inline struct net_device *xt_in(const struct xt_action_param *par) {
return par->in;
}
static inline struct net_device *xt_out(const struct xt_action_param *par) {
return par->out;
}
static inline unsigned int xt_hooknum(const struct xt_action_param *par) {
return par->hooknum;
}
#endif
struct nat_mapping_original_tuple {
struct nf_conntrack_tuple tuple;
struct list_head node;
};
struct nat_mapping {
uint16_t port; /* external UDP port */
int ifindex; /* external interface index*/
__be32 int_addr; /* internal source ip address */
uint16_t int_port; /* internal source port */
int refer_count; /* how many references linked to this mapping
* aka. length of original_tuple_list */
struct list_head original_tuple_list;
struct hlist_node node_by_ext_port;
struct hlist_node node_by_int_src;
};
struct tuple_list {
struct nf_conntrack_tuple tuple_original;
struct nf_conntrack_tuple tuple_reply;
struct list_head list;
};
#ifdef CONFIG_NF_CONNTRACK_CHAIN_EVENTS
struct notifier_block ct_event_notifier;
#else
struct nf_ct_event_notifier ct_event_notifier;
#endif
int tg_refer_count = 0;
int ct_event_notifier_registered = 0;
static DEFINE_MUTEX(nf_ct_net_event_lock);
static DEFINE_HASHTABLE(mapping_table_by_ext_port, HASHTABLE_BUCKET_BITS);
static DEFINE_HASHTABLE(mapping_table_by_int_src, HASHTABLE_BUCKET_BITS);
static DEFINE_SPINLOCK(fullconenat_lock);
static LIST_HEAD(dying_tuple_list);
static DEFINE_SPINLOCK(dying_tuple_list_lock);
static void gc_worker(struct work_struct *work);
static struct workqueue_struct *wq __read_mostly = NULL;
static DECLARE_DELAYED_WORK(gc_worker_wk, gc_worker);
static char tuple_tmp_string[512];
/* non-atomic: can only be called serially within lock zones. */
static char* nf_ct_stringify_tuple(const struct nf_conntrack_tuple *t) {
snprintf(tuple_tmp_string, sizeof(tuple_tmp_string), "%pI4:%hu -> %pI4:%hu",
&t->src.u3.ip, be16_to_cpu(t->src.u.all),
&t->dst.u3.ip, be16_to_cpu(t->dst.u.all));
return tuple_tmp_string;
}
static struct nat_mapping* allocate_mapping(const __be32 int_addr, const uint16_t int_port, const uint16_t port, const int ifindex) {
struct nat_mapping *p_new;
u32 hash_src;
p_new = kmalloc(sizeof(struct nat_mapping), GFP_ATOMIC);
if (p_new == NULL) {
pr_debug("xt_FULLCONENAT: ERROR: kmalloc() for new nat_mapping failed.\n");
return NULL;
}
p_new->port = port;
p_new->int_addr = int_addr;
p_new->int_port = int_port;
p_new->ifindex = ifindex;
p_new->refer_count = 0;
(p_new->original_tuple_list).next = &(p_new->original_tuple_list);
(p_new->original_tuple_list).prev = &(p_new->original_tuple_list);
hash_src = HASH_2(int_addr, (u32)int_port);
hash_add(mapping_table_by_ext_port, &p_new->node_by_ext_port, port);
hash_add(mapping_table_by_int_src, &p_new->node_by_int_src, hash_src);
pr_debug("xt_FULLCONENAT: new mapping allocated for %pI4:%d ==> %d\n",
&p_new->int_addr, p_new->int_port, p_new->port);
return p_new;
}
static void add_original_tuple_to_mapping(struct nat_mapping *mapping, const struct nf_conntrack_tuple* original_tuple) {
struct nat_mapping_original_tuple *item = kmalloc(sizeof(struct nat_mapping_original_tuple), GFP_ATOMIC);
if (item == NULL) {
pr_debug("xt_FULLCONENAT: ERROR: kmalloc() for nat_mapping_original_tuple failed.\n");
return;
}
memcpy(&item->tuple, original_tuple, sizeof(struct nf_conntrack_tuple));
list_add(&item->node, &mapping->original_tuple_list);
(mapping->refer_count)++;
}
static struct nat_mapping* get_mapping_by_ext_port(const uint16_t port, const int ifindex) {
struct nat_mapping *p_current;
hash_for_each_possible(mapping_table_by_ext_port, p_current, node_by_ext_port, port) {
if (p_current->port == port && p_current->ifindex == ifindex) {
return p_current;
}
}
return NULL;
}
static struct nat_mapping* get_mapping_by_int_src(const __be32 src_ip, const uint16_t src_port) {
struct nat_mapping *p_current;
u32 hash_src = HASH_2(src_ip, (u32)src_port);
hash_for_each_possible(mapping_table_by_int_src, p_current, node_by_int_src, hash_src) {
if (p_current->int_addr == src_ip && p_current->int_port == src_port) {
return p_current;
}
}
return NULL;
}
static void kill_mapping(struct nat_mapping *mapping) {
struct list_head *iter, *tmp;
struct nat_mapping_original_tuple *original_tuple_item;
if (mapping == NULL) {
return;
}
list_for_each_safe(iter, tmp, &mapping->original_tuple_list) {
original_tuple_item = list_entry(iter, struct nat_mapping_original_tuple, node);
list_del(&original_tuple_item->node);
kfree(original_tuple_item);
}
hash_del(&mapping->node_by_ext_port);
hash_del(&mapping->node_by_int_src);
kfree(mapping);
}
static void destroy_mappings(void) {
struct nat_mapping *p_current;
struct hlist_node *tmp;
int i;
spin_lock_bh(&fullconenat_lock);
hash_for_each_safe(mapping_table_by_ext_port, i, tmp, p_current, node_by_ext_port) {
kill_mapping(p_current);
}
spin_unlock_bh(&fullconenat_lock);
}
/* check if a mapping is valid.
* possibly delete and free an invalid mapping.
* the mapping should not be used anymore after check_mapping() returns 0. */
static int check_mapping(struct nat_mapping* mapping, struct net *net, const struct nf_conntrack_zone *zone) {
struct list_head *iter, *tmp;
struct nat_mapping_original_tuple *original_tuple_item;
struct nf_conntrack_tuple_hash *tuple_hash;
struct nf_conn *ct;
if (mapping == NULL) {
return 0;
}
if (mapping->port == 0 || mapping->int_addr == 0 || mapping->int_port == 0 || mapping->ifindex == -1) {
return 0;
}
/* for dying/unconfirmed conntrack tuples, an IPCT_DESTROY event may NOT be fired.
* so we manually kill one of those tuples once we acquire one. */
list_for_each_safe(iter, tmp, &mapping->original_tuple_list) {
original_tuple_item = list_entry(iter, struct nat_mapping_original_tuple, node);
tuple_hash = nf_conntrack_find_get(net, zone, &original_tuple_item->tuple);
if (tuple_hash == NULL) {
pr_debug("xt_FULLCONENAT: check_mapping(): tuple %s dying/unconfirmed. free this tuple.\n", nf_ct_stringify_tuple(&original_tuple_item->tuple));
list_del(&original_tuple_item->node);
kfree(original_tuple_item);
(mapping->refer_count)--;
} else {
ct = nf_ct_tuplehash_to_ctrack(tuple_hash);
if (ct != NULL)
nf_ct_put(ct);
}
}
/* kill the mapping if need */
pr_debug("xt_FULLCONENAT: check_mapping() refer_count for mapping at ext_port %d is now %d\n", mapping->port, mapping->refer_count);
if (mapping->refer_count <= 0) {
pr_debug("xt_FULLCONENAT: check_mapping(): kill dying/unconfirmed mapping at ext port %d\n", mapping->port);
kill_mapping(mapping);
return 0;
} else {
return 1;
}
}
static void handle_dying_tuples(void) {
struct list_head *iter, *tmp, *iter_2, *tmp_2;
struct tuple_list *item;
struct nf_conntrack_tuple *ct_tuple;
struct nat_mapping *mapping;
__be32 ip;
uint16_t port;
struct nat_mapping_original_tuple *original_tuple_item;
spin_lock_bh(&fullconenat_lock);
spin_lock_bh(&dying_tuple_list_lock);
list_for_each_safe(iter, tmp, &dying_tuple_list) {
item = list_entry(iter, struct tuple_list, list);
/* we dont know the conntrack direction for now so we try in both ways. */
ct_tuple = &(item->tuple_original);
ip = (ct_tuple->src).u3.ip;
port = be16_to_cpu((ct_tuple->src).u.udp.port);
mapping = get_mapping_by_int_src(ip, port);
if (mapping == NULL) {
ct_tuple = &(item->tuple_reply);
ip = (ct_tuple->src).u3.ip;
port = be16_to_cpu((ct_tuple->src).u.udp.port);
mapping = get_mapping_by_int_src(ip, port);
if (mapping != NULL) {
pr_debug("xt_FULLCONENAT: handle_dying_tuples(): INBOUND dying conntrack at ext port %d\n", mapping->port);
}
} else {
pr_debug("xt_FULLCONENAT: handle_dying_tuples(): OUTBOUND dying conntrack at ext port %d\n", mapping->port);
}
if (mapping == NULL) {
goto next;
}
/* look for the corresponding out-dated tuple and free it */
list_for_each_safe(iter_2, tmp_2, &mapping->original_tuple_list) {
original_tuple_item = list_entry(iter_2, struct nat_mapping_original_tuple, node);
if (nf_ct_tuple_equal(&original_tuple_item->tuple, &(item->tuple_original))) {
pr_debug("xt_FULLCONENAT: handle_dying_tuples(): tuple %s expired. free this tuple.\n",
nf_ct_stringify_tuple(&original_tuple_item->tuple));
list_del(&original_tuple_item->node);
kfree(original_tuple_item);
(mapping->refer_count)--;
}
}
/* then kill the mapping if needed*/
pr_debug("xt_FULLCONENAT: handle_dying_tuples(): refer_count for mapping at ext_port %d is now %d\n", mapping->port, mapping->refer_count);
if (mapping->refer_count <= 0) {
pr_debug("xt_FULLCONENAT: handle_dying_tuples(): kill expired mapping at ext port %d\n", mapping->port);
kill_mapping(mapping);
}
next:
list_del(&item->list);
kfree(item);
}
spin_unlock_bh(&dying_tuple_list_lock);
spin_unlock_bh(&fullconenat_lock);
}
static void gc_worker(struct work_struct *work) {
handle_dying_tuples();
}
/* conntrack destroy event callback function */
#ifdef CONFIG_NF_CONNTRACK_CHAIN_EVENTS
static int ct_event_cb(struct notifier_block *this, unsigned long events, void *ptr) {
struct nf_ct_event *item = ptr;
#else
static int ct_event_cb(unsigned int events, struct nf_ct_event *item) {
#endif
struct nf_conn *ct;
struct nf_conntrack_tuple *ct_tuple_reply, *ct_tuple_original;
uint8_t protonum;
struct tuple_list *dying_tuple_item;
ct = item->ct;
/* we handle only conntrack destroy events */
if (ct == NULL || !(events & (1 << IPCT_DESTROY))) {
return 0;
}
ct_tuple_original = &(ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
ct_tuple_reply = &(ct->tuplehash[IP_CT_DIR_REPLY].tuple);
protonum = (ct_tuple_original->dst).protonum;
if (protonum != IPPROTO_UDP) {
return 0;
}
dying_tuple_item = kmalloc(sizeof(struct tuple_list), GFP_ATOMIC);
if (dying_tuple_item == NULL) {
pr_debug("xt_FULLCONENAT: warning: ct_event_cb(): kmalloc failed.\n");
return 0;
}
memcpy(&(dying_tuple_item->tuple_original), ct_tuple_original, sizeof(struct nf_conntrack_tuple));
memcpy(&(dying_tuple_item->tuple_reply), ct_tuple_reply, sizeof(struct nf_conntrack_tuple));
spin_lock_bh(&dying_tuple_list_lock);
list_add(&(dying_tuple_item->list), &dying_tuple_list);
spin_unlock_bh(&dying_tuple_list_lock);
if (wq != NULL)
queue_delayed_work(wq, &gc_worker_wk, msecs_to_jiffies(100));
return 0;
}
static __be32 get_device_ip(const struct net_device* dev) {
struct in_device* in_dev;
struct in_ifaddr* if_info;
__be32 result;
if (dev == NULL) {
return 0;
}
rcu_read_lock();
in_dev = dev->ip_ptr;
if (in_dev == NULL) {
rcu_read_unlock();
return 0;
}
if_info = in_dev->ifa_list;
if (if_info) {
result = if_info->ifa_local;
rcu_read_unlock();
return result;
} else {
rcu_read_unlock();
return 0;
}
}
static uint16_t find_appropriate_port(struct net *net, const struct nf_conntrack_zone *zone, const uint16_t original_port, const int ifindex, const struct nf_nat_ipv4_range *range) {
uint16_t min, start, selected, range_size, i;
struct nat_mapping* mapping = NULL;
if (range->flags & NF_NAT_RANGE_PROTO_SPECIFIED) {
min = be16_to_cpu((range->min).udp.port);
range_size = be16_to_cpu((range->max).udp.port) - min + 1;
} else {
/* minimum port is 1024. same behavior as default linux NAT. */
min = 1024;
range_size = 65535 - min + 1;
}
if ((range->flags & NF_NAT_RANGE_PROTO_RANDOM)
|| (range->flags & NF_NAT_RANGE_PROTO_RANDOM_FULLY)) {
/* for now we do the same thing for both --random and --random-fully */
/* select a random starting point */
start = (uint16_t)(prandom_u32() % (u32)range_size);
} else {
if ((original_port >= min && original_port <= min + range_size - 1)
|| !(range->flags & NF_NAT_RANGE_PROTO_SPECIFIED)) {
/* 1. try to preserve the port if it's available */
mapping = get_mapping_by_ext_port(original_port, ifindex);
if (mapping == NULL || !(check_mapping(mapping, net, zone))) {
return original_port;
}
}
/* otherwise, we start from zero */
start = 0;
}
for (i = 0; i < range_size; i++) {
/* 2. try to find an available port */
selected = min + ((start + i) % range_size);
mapping = get_mapping_by_ext_port(selected, ifindex);
if (mapping == NULL || !(check_mapping(mapping, net, zone))) {
return selected;
}
}
/* 3. at least we tried. override a previous mapping. */
selected = min + start;
mapping = get_mapping_by_ext_port(selected, ifindex);
kill_mapping(mapping);
return selected;
}
static unsigned int fullconenat_tg(struct sk_buff *skb, const struct xt_action_param *par)
{
const struct nf_nat_ipv4_multi_range_compat *mr;
const struct nf_nat_ipv4_range *range;
const struct nf_conntrack_zone *zone;
struct net *net;
struct nf_conn *ct;
enum ip_conntrack_info ctinfo;
struct nf_conntrack_tuple *ct_tuple, *ct_tuple_origin;
struct net_device *net_dev;
struct nat_mapping *mapping, *src_mapping;
unsigned int ret;
#if LINUX_VERSION_CODE >= KERNEL_VERSION(4, 18, 0)
struct nf_nat_range2 newrange;
#else
struct nf_nat_range newrange;
#endif
__be32 new_ip, ip;
uint16_t port, original_port, want_port;
uint8_t protonum;
int ifindex;
ip = 0;
original_port = 0;
src_mapping = NULL;
mr = par->targinfo;
range = &mr->range[0];
mapping = NULL;
ret = XT_CONTINUE;
ct = nf_ct_get(skb, &ctinfo);
net = nf_ct_net(ct);
zone = nf_ct_zone(ct);
memset(&newrange.min_addr, 0, sizeof(newrange.min_addr));
memset(&newrange.max_addr, 0, sizeof(newrange.max_addr));
newrange.flags = mr->range[0].flags | NF_NAT_RANGE_MAP_IPS;
newrange.min_proto = mr->range[0].min;
newrange.max_proto = mr->range[0].max;
if (xt_hooknum(par) == NF_INET_PRE_ROUTING) {
/* inbound packets */
ifindex = xt_in(par)->ifindex;
ct_tuple_origin = &(ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
protonum = (ct_tuple_origin->dst).protonum;
if (protonum != IPPROTO_UDP) {
return ret;
}
ip = (ct_tuple_origin->dst).u3.ip;
port = be16_to_cpu((ct_tuple_origin->dst).u.udp.port);
/* get the corresponding ifindex by the dst_ip (aka. external ip of this host),
* in case the packet needs to be forwarded from another inbound interface. */
net_dev = ip_dev_find(net, ip);
if (net_dev != NULL) {
ifindex = net_dev->ifindex;
dev_put(net_dev);
}
spin_lock_bh(&fullconenat_lock);
/* find an active mapping based on the inbound port */
mapping = get_mapping_by_ext_port(port, ifindex);
if (mapping == NULL) {
spin_unlock_bh(&fullconenat_lock);
return ret;
}
if (check_mapping(mapping, net, zone)) {
newrange.flags = NF_NAT_RANGE_MAP_IPS | NF_NAT_RANGE_PROTO_SPECIFIED;
newrange.min_addr.ip = mapping->int_addr;
newrange.max_addr.ip = mapping->int_addr;
newrange.min_proto.udp.port = cpu_to_be16(mapping->int_port);
newrange.max_proto = newrange.min_proto;
pr_debug("xt_FULLCONENAT: <INBOUND DNAT> %s ==> %pI4:%d\n", nf_ct_stringify_tuple(ct_tuple_origin), &mapping->int_addr, mapping->int_port);
ret = nf_nat_setup_info(ct, &newrange, HOOK2MANIP(xt_hooknum(par)));
if (ret == NF_ACCEPT) {
add_original_tuple_to_mapping(mapping, ct_tuple_origin);
pr_debug("xt_FULLCONENAT: fullconenat_tg(): INBOUND: refer_count for mapping at ext_port %d is now %d\n", mapping->port, mapping->refer_count);
}
}
spin_unlock_bh(&fullconenat_lock);
return ret;
} else if (xt_hooknum(par) == NF_INET_POST_ROUTING) {
/* outbound packets */
ifindex = xt_out(par)->ifindex;
ct_tuple_origin = &(ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
protonum = (ct_tuple_origin->dst).protonum;
spin_lock_bh(&fullconenat_lock);
if (protonum == IPPROTO_UDP) {
ip = (ct_tuple_origin->src).u3.ip;
original_port = be16_to_cpu((ct_tuple_origin->src).u.udp.port);
src_mapping = get_mapping_by_int_src(ip, original_port);
if (src_mapping != NULL && check_mapping(src_mapping, net, zone)) {
/* outbound nat: if a previously established mapping is active,
* we will reuse that mapping. */
newrange.flags = NF_NAT_RANGE_MAP_IPS | NF_NAT_RANGE_PROTO_SPECIFIED;
newrange.min_proto.udp.port = cpu_to_be16(src_mapping->port);
newrange.max_proto = newrange.min_proto;
} else {
/* if not, we find a new external port to map to.
* the SNAT may fail so we should re-check the mapped port later. */
want_port = find_appropriate_port(net, zone, original_port, ifindex, range);
newrange.flags = NF_NAT_RANGE_MAP_IPS | NF_NAT_RANGE_PROTO_SPECIFIED;
newrange.min_proto.udp.port = cpu_to_be16(want_port);
newrange.max_proto = newrange.min_proto;
src_mapping = NULL;
}
}
if(mr->range[0].flags & NF_NAT_RANGE_MAP_IPS) {
newrange.min_addr.ip = mr->range[0].min_ip;
newrange.max_addr.ip = mr->range[0].max_ip;
} else {
new_ip = get_device_ip(skb->dev);
newrange.min_addr.ip = new_ip;
newrange.max_addr.ip = new_ip;
}
/* do SNAT now */
ret = nf_nat_setup_info(ct, &newrange, HOOK2MANIP(xt_hooknum(par)));
if (protonum != IPPROTO_UDP || ret != NF_ACCEPT) {
/* for non-UDP packets and failed SNAT, bailout */
spin_unlock_bh(&fullconenat_lock);
return ret;
}
/* the reply tuple contains the mapped port. */
ct_tuple = &(ct->tuplehash[IP_CT_DIR_REPLY].tuple);
/* this is the resulted mapped port. */
port = be16_to_cpu((ct_tuple->dst).u.udp.port);
pr_debug("xt_FULLCONENAT: <OUTBOUND SNAT> %s ==> %d\n", nf_ct_stringify_tuple(ct_tuple_origin), port);
/* save the mapping information into our mapping table */
mapping = src_mapping;
if (mapping == NULL || !check_mapping(mapping, net, zone)) {
mapping = allocate_mapping(ip, original_port, port, ifindex);
}
if (mapping != NULL) {
add_original_tuple_to_mapping(mapping, ct_tuple_origin);
pr_debug("xt_FULLCONENAT: fullconenat_tg(): OUTBOUND: refer_count for mapping at ext_port %d is now %d\n", mapping->port, mapping->refer_count);
}
spin_unlock_bh(&fullconenat_lock);
return ret;
}
return ret;
}
static int fullconenat_tg_check(const struct xt_tgchk_param *par)
{
mutex_lock(&nf_ct_net_event_lock);
tg_refer_count++;
pr_debug("xt_FULLCONENAT: fullconenat_tg_check(): tg_refer_count is now %d\n", tg_refer_count);
if (tg_refer_count == 1) {
nf_ct_netns_get(par->net, par->family);
#ifdef CONFIG_NF_CONNTRACK_CHAIN_EVENTS
ct_event_notifier.notifier_call = ct_event_cb;
#else
ct_event_notifier.fcn = ct_event_cb;
#endif
if (nf_conntrack_register_notifier(par->net, &ct_event_notifier) == 0) {
ct_event_notifier_registered = 1;
pr_debug("xt_FULLCONENAT: fullconenat_tg_check(): ct_event_notifier registered\n");
} else {
printk("xt_FULLCONENAT: warning: failed to register a conntrack notifier. Disable active GC for mappings.\n");
}
}
mutex_unlock(&nf_ct_net_event_lock);
return 0;
}
static void fullconenat_tg_destroy(const struct xt_tgdtor_param *par)
{
mutex_lock(&nf_ct_net_event_lock);
tg_refer_count--;
pr_debug("xt_FULLCONENAT: fullconenat_tg_destroy(): tg_refer_count is now %d\n", tg_refer_count);
if (tg_refer_count == 0) {
if (ct_event_notifier_registered) {
nf_conntrack_unregister_notifier(par->net, &ct_event_notifier);
ct_event_notifier_registered = 0;
pr_debug("xt_FULLCONENAT: fullconenat_tg_destroy(): ct_event_notifier unregistered\n");
}
nf_ct_netns_put(par->net, par->family);
}
mutex_unlock(&nf_ct_net_event_lock);
}
static struct xt_target tg_reg[] __read_mostly = {
{
.name = "FULLCONENAT",
.family = NFPROTO_IPV4,
.revision = 0,
.target = fullconenat_tg,
.targetsize = sizeof(struct nf_nat_ipv4_multi_range_compat),
.table = "nat",
.hooks = (1 << NF_INET_PRE_ROUTING) |
(1 << NF_INET_POST_ROUTING),
.checkentry = fullconenat_tg_check,
.destroy = fullconenat_tg_destroy,
.me = THIS_MODULE,
},
};
static int __init fullconenat_tg_init(void)
{
wq = create_singlethread_workqueue("xt_FULLCONENAT");
if (wq == NULL) {
printk("xt_FULLCONENAT: warning: failed to create workqueue\n");
}
return xt_register_targets(tg_reg, ARRAY_SIZE(tg_reg));
}
static void fullconenat_tg_exit(void)
{
xt_unregister_targets(tg_reg, ARRAY_SIZE(tg_reg));
if (wq) {
cancel_delayed_work_sync(&gc_worker_wk);
flush_workqueue(wq);
destroy_workqueue(wq);
}
handle_dying_tuples();
destroy_mappings();
}
module_init(fullconenat_tg_init);
module_exit(fullconenat_tg_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Xtables: implementation of RFC3489 full cone NAT");
MODULE_AUTHOR("Chion Tang <tech@chionlab.moe>");
MODULE_ALIAS("ipt_FULLCONENAT");