-
Notifications
You must be signed in to change notification settings - Fork 3
/
eigendecomposition.h
170 lines (145 loc) · 6.04 KB
/
eigendecomposition.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
/***************************************************************************
* Copyright (C) 2009 by BUI Quang Minh *
* minh.bui@univie.ac.at *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#ifndef EIGENDECOMPOSITION_H
#define EIGENDECOMPOSITION_H
/**
Eigenvalues, eigenvectors decomposition
@author BUI Quang Minh <minh.bui@univie.ac.at>
*/
class EigenDecomposition{
public:
EigenDecomposition();
~EigenDecomposition();
/**
EigenSystem for symmetric matrix
@param rate_params rate parameters (not the rate matrix)
@param state_freq state frequencies
@param eval (OUT) eigenvalues
@param evec (OUT) eigenvectors
@param inv_evec (OUT) inverse matrix of eigenvectors
@param num_state (IN) number of states
*/
void eigensystem_sym(double **rate_params, double *state_freq,
double *eval, double **evec, double **inv_evec, int num_state);
/**
EigenSystem for general non-symmetric matrix
@param rate_params rate parameters (not the rate matrix)
@param state_freq state frequencies
@param eval (OUT) eigenvalues
@param evec (OUT) eigenvectors
@param inv_evec (OUT) inverse matrix of eigenvectors
@param num_state (IN) number of states
*/
void eigensystem(double **rate_params, double *state_freq,
double *eval, double **evec, double **inv_evec, int num_state);
protected:
/**
the total number of substitutions per unit time
*/
double total_num_subst;
protected:
/**
compute the rate matrix and then normalize it such that the total number of substitutions is 1.
@param rate_matrix (IN/OUT) As input, it contains rate parameters. On output it is filled with rate matrix entries
@param state_freq state frequencies
@param num_state number of states
*/
void computeRateMatrix(double **rate_matrix, double *state_freq, int num_state);
/**
Eliminate zero entries in the rate matrix.
Return the new non-zero matrix with possibly reduced dimension.
@param mat input rate matrix
@param forg state frequencies
@param num number of states
@param new_mat (OUT) the new rate matrix
@param new_forg (OUT) new state frequencies
@param new_num (OUT) new number of states
*/
void eliminateZero(double **mat, double *forg, int num,
double **new_mat, double *new_forg, int &new_num);
/*********************************************************
* aided function for symmetric matrix
*********************************************************/
/**
transform the rate matrix into symmetric form, used for subsequent eigen decomposition
@param a (IN/OUT) rate matrix
@param stateFrq state frequencies
@param stateFrq_sqrt square root of state frequencies
@param num_state number of states
*/
void symmetrizeRateMatrix(double **a, double *stateFrq, double *stateFrq_sqrt, int num_state);
/**
Householder transformation of symmetric matrix A
to tridiagonal form
@param a the input matrix, must be symmetric. On output,
a is replaced by the orthogonal matrix effecting the transformation
@param n the size of matrix a
@param d [0..n-1] returned the diagonal elements of the tridiagonal matrix
@param e [0..n-1] returned the off-diagonal elements with e[0]=0
*/
void tred2(double **a, int n, double *d, double *e);
/**
QL algorithm with implicit shifts to determine eigenvalues and
eigenvectors of a real tridiagonal symmetric matrix.
@param d [0..n-1] diagonal elements of the tridiagonal matrix.
On output d return the eigenvalues.
@param e [0..n-1] off-diagonal elements of the tridiagonal matrix, e[0] arbitrary.
On output e is destroyed.
@param n matrix size
@param z must be input as the matrix returned by tred2
z[k] return the normalized eigenvector corresponding to d[k]
*/
void tqli(double *d, double *e, int n, double **z);
/*********************************************************
* aided function for non-symmetric matrix
*********************************************************/
/**
convert a non-symmetric matrix into Hessenberg form with zeros everywhere
below the diagonal except for the first sub-diagonal row
@param a (IN-OUT) the matrix
@param ordr (OUT) the order of columns
@param n (IN) size of matrix
*/
void elmhes(double **a, int *ordr, int n);
/*
something here
*/
void eltran(double **a, double **zz, int *ordr, int n);
/*
something here
*/
void mcdiv(double ar, double ai, double br, double bi,
double *cr, double *ci);
/**
QR algorithm for non-symmetric matrix to calculate eigenvectors and eigenvalues
of a Hessenberg matrix (should be preceded by elmhes function)
@param n (IN) size of matrix
*/
void hqr2(int n, int low, int hgh, double **h, double **zz, double *wr, double *wi);
/**
compute the inverse of a square matrix
@param inmat (IN) the matrix
@param imtrx (OUT) the inverse of the input matrix
@param size the size of matrix
*/
void luinverse(double **inmat, double **imtrx, int size);
void checkevector(double **evec, double **ivec, int nn);
};
#endif