-
Notifications
You must be signed in to change notification settings - Fork 3
/
gtrmodel.h
323 lines (260 loc) · 9.21 KB
/
gtrmodel.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
/***************************************************************************
* Copyright (C) 2009 by BUI Quang Minh *
* minh.bui@univie.ac.at *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#ifndef GTRMODEL_H
#define GTRMODEL_H
#define EIGEN
#include "phylotree.h"
#include "modelsubst.h"
#include "optimization.h"
#include "alignment.h"
#include "eigendecomposition.h"
const double MIN_RATE = 1e-4;
const double TOL_RATE = 1e-4;
const double MAX_RATE = 100;
/**
General Time Reversible (GTR) model of substitution.
This works for all kind of data, not only DNA
@author BUI Quang Minh <minh.bui@univie.ac.at>
*/
class GTRModel : public ModelSubst, public EigenDecomposition
{
friend class ModelSet;
public:
/**
constructor
@param tree associated tree for the model
*/
GTRModel(PhyloTree *tree, bool count_rates = true);
/**
init the model and decompose the rate matrix. This function should always be called
after creating the class. Otherwise it will not work properly.
@param freq_type state frequency type, can be FREQ_USER_DEFINED, FREQ_EQUAL, FREQ_EMPIRICAL, or FREQ_ESTIMATE
*/
void init(StateFreqType freq_type);
/**
this function is served for ModelDNA and ModelProtein
@param model_name name of the model
@param freq_type state frequency type, can be FREQ_USER_DEFINED, FREQ_EQUAL, FREQ_EMPIRICAL, or FREQ_ESTIMATE
*/
virtual void init(const char *model_name, string model_params, StateFreqType freq, string freq_params) {}
/**
destructor
*/
virtual ~GTRModel();
/**
set the associated tree
@param tree the associated tree
*/
void setTree(PhyloTree *tree);
/**
Read the upper-triangle rate matrix from an input stream.
It will throw error messages if failed
@param in input stream
*/
virtual void readRates(istream &in) throw(const char*);
/**
Read the rate parameters from a comma-separated string
It will throw error messages if failed
@param in input stream
*/
virtual void readRates(string str) throw(const char*);
/**
Read state frequencies from an input stream.
It will throw error messages if failed
@param in input stream
*/
virtual void readStateFreq(istream &in) throw(const char*);
/**
Read state frequencies from comma-separated string
It will throw error messages if failed
@param str input string
*/
virtual void readStateFreq(string str) throw(const char*);
/**
read model parameters from a file
@param file_name file containing upper-triangle rate matrix and state frequencies
*/
void readParameters(const char *file_name);
/**
compute the transition probability matrix.
@param time time between two events
@param trans_matrix (OUT) the transition matrix between all pairs of states.
Assume trans_matrix has size of num_states * num_states.
*/
virtual void computeTransMatrix(double time, double *trans_matrix);
/**
* wrapper for computing transition matrix times state frequency vector
* @param time time between two events
* @param trans_matrix (OUT) the transition matrix between all pairs of states.
* Assume trans_matrix has size of num_states * num_states.
*/
virtual void computeTransMatrixFreq(double time, double *trans_matrix);
/**
compute the transition probability between two states
@param time time between two events
@param state1 first state
@param state2 second state
*/
virtual double computeTrans(double time, int state1, int state2);
/**
compute the transition probability between two states
@param time time between two events
@param state1 first state
@param state2 second state
@param derv1 (OUT) 1st derivative
@param derv2 (OUT) 2nd derivative
*/
virtual double computeTrans(double time, int state1, int state2, double &derv1, double &derv2);
/**
Get the rate matrix.
@param rate_mat (OUT) upper-triagle rate matrix. Assume rate_mat has size of num_states*(num_states-1)/2
*/
virtual void getRateMatrix(double *rate_mat);
/**
Set the rate matrix.
@param rate_mat upper-triagle rate matrix. Assume rate_mat has size of num_states*(num_states-1)/2
*/
virtual void setRateMatrix(double *rate_mat);
/**
compute the state frequency vector
@param state_freq (OUT) state frequency vector. Assume state_freq has size of num_states
*/
virtual void getStateFrequency(double *state_freq);
/**
set the state frequency vector
@param state_freq (IN) state frequency vector. Assume state_freq has size of num_states
*/
virtual void setStateFrequency(double *state_freq);
/**
* compute Q matrix
* @param q_mat (OUT) Q matrix, assuming of size num_states * num_states
*/
virtual void getQMatrix(double *q_mat);
/**
rescale the state frequencies
@param sum_one TRUE to make frequencies sum to 1, FALSE to make last entry equal to 1
*/
void scaleStateFreq(bool sum_one);
/**
get frequency type
@return frequency type
*/
virtual StateFreqType getFreqType() { return freq_type; }
/**
compute the transition probability matrix.and the derivative 1 and 2
@param time time between two events
@param trans_matrix (OUT) the transition matrix between all pairs of states.
Assume trans_matrix has size of num_states * num_states.
@param trans_derv1 (OUT) the 1st derivative matrix between all pairs of states.
@param trans_derv2 (OUT) the 2nd derivative matrix between all pairs of states.
*/
virtual void computeTransDerv(double time, double *trans_matrix,
double *trans_derv1, double *trans_derv2);
/**
compute the transition probability matrix.and the derivative 1 and 2 times state frequency vector
@param time time between two events
@param trans_matrix (OUT) the transition matrix between all pairs of states.
Assume trans_matrix has size of num_states * num_states.
@param trans_derv1 (OUT) the 1st derivative matrix between all pairs of states.
@param trans_derv2 (OUT) the 2nd derivative matrix between all pairs of states.
*/
virtual void computeTransDervFreq(double time, double rate_val, double *trans_matrix,
double *trans_derv1, double *trans_derv2);
/**
@return the number of dimensions
*/
virtual int getNDim();
/**
the target function which needs to be optimized
@param x the input vector x
@return the function value at x
*/
virtual double targetFunk(double x[]);
/**
optimize model parameters
@return the best likelihood
*/
virtual double optimizeParameters(double epsilon);
/**
write information
@param out output stream
*/
virtual void writeInfo(ostream &out);
/**
write parameters, used with modeltest
@param out output stream
*/
virtual void writeParameters(ostream &out){}
/**
decompose the rate matrix into eigenvalues and eigenvectors
*/
virtual void decomposeRateMatrix();
double *getEigenCoeff() const;
double *getEigenvalues() const;
double **getEigenvectors() const;
double **getInverseEigenvectors() const;
void setEigenCoeff(double *eigenCoeff);
void setEigenvalues(double *eigenvalues);
void setEigenvectors(double **eigenvectors);
protected:
/**
this function is served for the multi-dimension optimization. It should pack the model parameters
into a vector that is index from 1 (NOTE: not from 0)
@param variables (OUT) vector of variables, indexed from 1
*/
virtual void setVariables(double *variables);
/**
this function is served for the multi-dimension optimization. It should assign the model parameters
from a vector of variables that is index from 1 (NOTE: not from 0)
@param variables vector of variables, indexed from 1
*/
virtual void getVariables(double *variables);
virtual void freeMem();
/**
phylogenetic tree associated
*/
PhyloTree *phylo_tree;
/**
rates between pairs of states of the unit rate matrix Q.
In order A-C, A-G, A-T, C-G, C-T (rate G-T = 1 always)
*/
double *rates;
/**
the number of free rate parameters
*/
int num_params;
/**
eigenvalues of the rate matrix Q
*/
double *eigenvalues;
/**
eigenvectors of the rate matrix Q
*/
double **eigenvectors;
/**
inverse eigenvectors of the rate matrix Q
*/
double **inv_eigenvectors;
/**
coefficient cache, served for fast computation of the P(t) matrix
*/
double *eigen_coeff;
};
#endif