-
Notifications
You must be signed in to change notification settings - Fork 3
/
matree.cpp
192 lines (174 loc) · 7.15 KB
/
matree.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
/***************************************************************************
* Copyright (C) 2009 by BUI Quang Minh *
* minh.bui@univie.ac.at *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#include "matree.h"
void MaTree::printBrInfo(ostream& out) {
//to store internal branch lengths
DoubleVector inner;
//to store external branch lengths
DoubleVector outer;
//to store all branch lengths
DoubleVector all;
//convert the tree into split graph (vector of split*)
SplitGraph mySg;
convertSplits(mySg);
//get information about the branch length based on this SplitGraph
for ( SplitGraph::iterator it = mySg.begin(); it != mySg.end(); it++)
{
(*it)->report(cout);
//the split is an external branch
if ( (*it)->countTaxa() == 1 )
outer.push_back((*it)->getWeight());
else //the split is an internal branch
inner.push_back((*it)->getWeight());
//a branch
all.push_back((*it)->getWeight());
}
//sort the three vectors of branch lengths
sort(inner.begin(),inner.end());
sort(outer.begin(),outer.end());
sort(all.begin(),all.end());
//for the statistics
int noInner = inner.size();
int noOuter = outer.size();
int noBr = all.size();
double aveInner = 0;
double aveOuter = 0;
double treeLen = 0;
for ( int i = 0; i < noInner; i++ )
aveInner += inner[i];
for ( int i = 0; i < noOuter; i++ )
aveOuter += outer[i];
for ( int i = 0; i < noBr; i++ )
treeLen += all[i];
aveInner /= (double)noInner;
aveOuter /= (double)noOuter;
out << "minInter maxInter aveInter minExter maxExter aveExter minBr maxBr treeLen noBr" << endl;
out << inner[0] << " " << inner[noInner-1] << " " << aveInner << " " << outer[0] << " " << outer[noOuter-1] << " " << aveOuter << " " << all[0] << " " << all[noBr-1] << " " << treeLen << " " << noBr << endl;
}
void MaTree::comparedTo (MTreeSet &trees, DoubleMatrix &brLenMatrix, IntVector &RFs, DoubleVector &BSDs) {
//for consistency reason
NodeVector taxa;
getTaxa(taxa);
sort(taxa.begin(), taxa.end(), nodenamecmp);
int i;
NodeVector::iterator it;
for (it = taxa.begin(), i = 0; it != taxa.end(); it++, i++)
(*it)->id = i;
//convert the tree into SplitIntMap
SplitIntMap sim;
Split *sp = new Split(leafNum);
convertSplitIntMap(sim, sp, 0);
//output to test
/* for ( SplitIntMap::iterator it = sim.begin(); it != sim.end(); it++ ){
cout << (*it).second << "\t";
(*it).first->report(cout);
}*/
// get the taxa name
vector<string> taxname;
taxname.resize(leafNum);
getTaxaName(taxname);
int noTree = trees.size();
if (noTree == 0 ) return;
RFs.resize(noTree);
BSDs.resize(noTree);
//now check if it is consistent (rooting, same leaf set) with the input trees
MTree *tree = trees.front();
// if (tree->rooted != rooted)
// outError("Rooted and unrooted trees are mixed up");
if (tree->leafNum != leafNum)
outError("Tree has different number of taxa!");
vector<string> taxname1;
taxname1.resize(leafNum);
tree->getTaxaName(taxname1);
vector<string>::iterator strit;
for (strit = taxname1.begin(), i = 0; strit != taxname1.end(); strit++, i++) {
if ((*strit) != taxname[i])
outError("Tree has different taxa names!");
}
MTreeSet::iterator tit;
for ( tit = trees.begin(), i=0; tit != trees.end(); tit++, i++ )
{
DoubleVector brVec(nodeNum,-2);
SplitGraph *sg = new SplitGraph;
SplitIntMap *hs = new SplitIntMap;
(*tit)->convertSplits(taxname,*sg);
// make sure that taxon 0 is included
for (SplitGraph::iterator sit = sg->begin(); sit != sg->end(); sit++) {
if (!(*sit)->containTaxon(0)) (*sit)->invert();
// (*sit)->report(cout);
hs->insertSplit((*sit), 1);
}
int rf = 0;
double bsd = 0;
//go through each split in this tree (not the compared tree)
for ( SplitIntMap::iterator tsit = sim.begin(); tsit != sim.end(); tsit++ )
{
Split* fSplit = hs->findSplit(tsit->first); // check whether the compared tree contains this split
if (fSplit) { //yes
brVec[tsit->second] = fSplit->getWeight(); //update brVec
bsd += (fSplit->getWeight() - tsit->first->getWeight()) * (fSplit->getWeight() - tsit->first->getWeight()); //update bsd
}
else {
brVec[tsit->second] = -1;
rf++;
bsd += tsit->first->getWeight() * tsit->first->getWeight();
}
}
//go through each split in the compared tree
for ( SplitIntMap::iterator fsit = hs->begin(); fsit != hs->end(); fsit++ )
{
Split* fSplit = sim.findSplit(fsit->first);
if (!fSplit) {
rf++;
bsd += fsit->first->getWeight() * fsit->first->getWeight();
}
}
//insert the result
RFs[i] = rf;
BSDs[i] = bsd;
brLenMatrix.push_back(brVec);
delete sg;
delete hs;
}
}
//void MaTree::convertSplitIntMap(SplitIntMap &sim){}
void MaTree::convertSplitIntMap(SplitIntMap &sim, Split *resp, const int taxonID, Node *node, Node *dad) {
if (!node) node = root;
assert(resp->getNTaxa() == leafNum);
assert (taxonID >= 0 && taxonID < leafNum);
bool has_child = false;
FOR_NEIGHBOR_IT(node, dad, it) {
//vector<int> taxa;
//getTaxaID((*it)->node, node, taxa);
Split *sp = new Split(leafNum, (*it)->length);
convertSplitIntMap(sim, sp, taxonID,(*it)->node, node);
*resp += *sp;
if (!sp->containTaxon(taxonID))
sp->invert();
//sg.push_back(sp);
if ( node == root)
sim.insertSplit(sp,node->id);
else
sim.insertSplit(sp,(*it)->node->id);
has_child = true;
}
if (!has_child)
resp->addTaxon(node->id);
}