-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcm.grainlabs~.c
878 lines (797 loc) · 40.2 KB
/
cm.grainlabs~.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
/*
cm.grainlabs~ - a granular synthesis external audio object for Max/MSP.
Copyright (C) 2014 Matthias Müller - Circuit Music Labs
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
circuit.music.labs@gmail.com
*/
/************************************************************************************************************************/
/* INCLUDES */
/************************************************************************************************************************/
#include "ext.h"
#include "z_dsp.h"
#include "buffer.h"
#include "ext_atomic.h"
#include "ext_obex.h"
#include "cmstereo.h" // for cm_pan
#include "cmutil.h" // for cm_random
#include <stdlib.h> // for arc4random_uniform
#define MAX_GRAINLENGTH 300 // max grain length in ms
#define MIN_GRAINLENGTH 1 // min grain length in ms
#define MAX_PITCH 10 // max pitch
#define MAX_GAIN 2.0
#define ARGUMENTS 3 // constant number of arguments required for the external
#define MAXGRAINS 128 // maximum number of simultaneously playing grains
/************************************************************************************************************************/
/* OBJECT STRUCTURE */
/************************************************************************************************************************/
typedef struct _cmgrainlabs {
t_pxobject obj;
t_symbol *buffer_name; // sample buffer name
t_buffer_ref *buffer; // sample buffer reference
t_symbol *window_name; // window buffer name
t_buffer_ref *w_buffer; // window buffer reference
double m_sr; // system millisampling rate (samples per milliseconds = sr * 0.001)
double startmin_float; // grain start min value received from float inlet
double startmax_float; // grain start max value received from float inlet
double lengthmin_float; // used to store the min length value received from float inlet
double lengthmax_float; // used to store the max length value received from float inlet
double pitchmin_float; // used to store the min pitch value received from float inlet
double pitchmax_float; // used to store the max pitch value received from float inlet
double panmin_float; // used to store the min pan value received from the float inlet
double panmax_float; // used to store the max pan value received from the float inlet
double gainmin_float; // used to store the min gain value received from the float inlet
double gainmax_float; // used to store the max gain value received from the float inlet
short connect_status[10]; // array for signal inlet connection statuses
short *busy; // array used to store the flag if a grain is currently playing or not
long *grainpos; // used to store the current playback position per grain
long *start; // used to store the start position in the buffer for each grain
long *t_length; // current grain length before pitch adjustment
long *gr_length; // current grain length after pitch adjustment
double *pan_left; // pan information for left channel for each grain
double *pan_right; // pan information for right channel for each grain
double *gain; // gain information for each grain
double tr_prev; // trigger sample from previous signal vector (required to check if input ramp resets to zero)
short grains_limit; // user defined maximum number of grains
short grains_limit_old; // used to store the previous grains count limit when user changes the limit via the "limit" message
short limit_modified; // checkflag to see if user changed grain limit through "limit" method
short buffer_modified; // checkflag to see if buffer has been modified
short grains_count; // currently playing grains
void *grains_count_out; // outlet for number of currently playing grains (for debugging)
t_atom_long attr_stereo; // attribute: number of channels to be played
t_atom_long attr_winterp; // attribute: window interpolation on/off
t_atom_long attr_sinterp; // attribute: window interpolation on/off
t_atom_long attr_zero; // attribute: zero crossing trigger on/off
} t_cmgrainlabs;
/************************************************************************************************************************/
/* STATIC DECLARATIONS */
/************************************************************************************************************************/
static t_class *cmgrainlabs_class; // class pointer
static t_symbol *ps_buffer_modified, *ps_stereo;
/************************************************************************************************************************/
/* FUNCTION PROTOTYPES */
/************************************************************************************************************************/
void *cmgrainlabs_new(t_symbol *s, long argc, t_atom *argv);
void cmgrainlabs_dsp64(t_cmgrainlabs *x, t_object *dsp64, short *count, double samplerate, long maxvectorsize, long flags);
void cmgrainlabs_perform64(t_cmgrainlabs *x, t_object *dsp64, double **ins, long numins, double **outs, long numouts, long sampleframes, long flags, void *userparam);
void cmgrainlabs_assist(t_cmgrainlabs *x, void *b, long msg, long arg, char *dst);
void cmgrainlabs_free(t_cmgrainlabs *x);
void cmgrainlabs_float(t_cmgrainlabs *x, double f);
void cmgrainlabs_dblclick(t_cmgrainlabs *x);
t_max_err cmgrainlabs_notify(t_cmgrainlabs *x, t_symbol *s, t_symbol *msg, void *sender, void *data);
void cmgrainlabs_set(t_cmgrainlabs *x, t_symbol *s, long ac, t_atom *av);
void cmgrainlabs_limit(t_cmgrainlabs *x, t_symbol *s, long ac, t_atom *av);
t_max_err cmgrainlabs_stereo_set(t_cmgrainlabs *x, t_object *attr, long argc, t_atom *argv);
t_max_err cmgrainlabs_winterp_set(t_cmgrainlabs *x, t_object *attr, long argc, t_atom *argv);
t_max_err cmgrainlabs_sinterp_set(t_cmgrainlabs *x, t_object *attr, long argc, t_atom *argv);
t_max_err cmgrainlabs_zero_set(t_cmgrainlabs *x, t_object *attr, long argc, t_atom *argv);
/************************************************************************************************************************/
/* MAIN FUNCTION (INITIALIZATION ROUTINE) */
/************************************************************************************************************************/
int C74_EXPORT main(void) {
// Initialize the class - first argument: VERY important to match the name of the object in the procect settings!!!
cmgrainlabs_class = class_new("cm.grainlabs~", (method)cmgrainlabs_new, (method)cmgrainlabs_free, sizeof(t_cmgrainlabs), 0, A_GIMME, 0);
class_addmethod(cmgrainlabs_class, (method)cmgrainlabs_dsp64, "dsp64", A_CANT, 0); // Bind the 64 bit dsp method
class_addmethod(cmgrainlabs_class, (method)cmgrainlabs_assist, "assist", A_CANT, 0); // Bind the assist message
class_addmethod(cmgrainlabs_class, (method)cmgrainlabs_float, "float", A_FLOAT, 0); // Bind the float message (allowing float input)
class_addmethod(cmgrainlabs_class, (method)cmgrainlabs_dblclick, "dblclick", A_CANT, 0); // Bind the double click message
class_addmethod(cmgrainlabs_class, (method)cmgrainlabs_notify, "notify", A_CANT, 0); // Bind the notify message
class_addmethod(cmgrainlabs_class, (method)cmgrainlabs_set, "set", A_GIMME, 0); // Bind the set message for user buffer set
class_addmethod(cmgrainlabs_class, (method)cmgrainlabs_limit, "limit", A_GIMME, 0); // Bind the limit message
CLASS_ATTR_ATOM_LONG(cmgrainlabs_class, "stereo", 0, t_cmgrainlabs, attr_stereo);
CLASS_ATTR_ACCESSORS(cmgrainlabs_class, "stereo", (method)NULL, (method)cmgrainlabs_stereo_set);
CLASS_ATTR_BASIC(cmgrainlabs_class, "stereo", 0);
CLASS_ATTR_SAVE(cmgrainlabs_class, "stereo", 0);
CLASS_ATTR_STYLE_LABEL(cmgrainlabs_class, "stereo", 0, "onoff", "Multichannel playback");
CLASS_ATTR_ATOM_LONG(cmgrainlabs_class, "w_interp", 0, t_cmgrainlabs, attr_winterp);
CLASS_ATTR_ACCESSORS(cmgrainlabs_class, "w_interp", (method)NULL, (method)cmgrainlabs_winterp_set);
CLASS_ATTR_BASIC(cmgrainlabs_class, "w_interp", 0);
CLASS_ATTR_SAVE(cmgrainlabs_class, "w_interp", 0);
CLASS_ATTR_STYLE_LABEL(cmgrainlabs_class, "w_interp", 0, "onoff", "Window interpolation on/off");
CLASS_ATTR_ATOM_LONG(cmgrainlabs_class, "s_interp", 0, t_cmgrainlabs, attr_sinterp);
CLASS_ATTR_ACCESSORS(cmgrainlabs_class, "s_interp", (method)NULL, (method)cmgrainlabs_sinterp_set);
CLASS_ATTR_BASIC(cmgrainlabs_class, "s_interp", 0);
CLASS_ATTR_SAVE(cmgrainlabs_class, "s_interp", 0);
CLASS_ATTR_STYLE_LABEL(cmgrainlabs_class, "s_interp", 0, "onoff", "Sample interpolation on/off");
CLASS_ATTR_ATOM_LONG(cmgrainlabs_class, "zero", 0, t_cmgrainlabs, attr_zero);
CLASS_ATTR_ACCESSORS(cmgrainlabs_class, "zero", (method)NULL, (method)cmgrainlabs_zero_set);
CLASS_ATTR_BASIC(cmgrainlabs_class, "zero", 0);
CLASS_ATTR_SAVE(cmgrainlabs_class, "zero", 0);
CLASS_ATTR_STYLE_LABEL(cmgrainlabs_class, "zero", 0, "onoff", "Zero crossing trigger mode on/off");
CLASS_ATTR_ORDER(cmgrainlabs_class, "stereo", 0, "1");
CLASS_ATTR_ORDER(cmgrainlabs_class, "w_interp", 0, "2");
CLASS_ATTR_ORDER(cmgrainlabs_class, "s_interp", 0, "3");
class_dspinit(cmgrainlabs_class); // Add standard Max/MSP methods to your class
class_register(CLASS_BOX, cmgrainlabs_class); // Register the class with Max
ps_buffer_modified = gensym("buffer_modified"); // assign the buffer modified message to the static pointer created above
ps_stereo = gensym("stereo");
return 0;
}
/************************************************************************************************************************/
/* NEW INSTANCE ROUTINE */
/************************************************************************************************************************/
void *cmgrainlabs_new(t_symbol *s, long argc, t_atom *argv) {
t_cmgrainlabs *x = (t_cmgrainlabs *)object_alloc(cmgrainlabs_class); // create the object and allocate required memory
dsp_setup((t_pxobject *)x, 11); // create 11 inlets
if (argc < ARGUMENTS) {
object_error((t_object *)x, "%d arguments required (sample/window/voices)", ARGUMENTS);
return NULL;
}
x->buffer_name = atom_getsymarg(0, argc, argv); // get user supplied argument for sample buffer
x->window_name = atom_getsymarg(1, argc, argv); // get user supplied argument for window buffer
x->grains_limit = atom_getintarg(2, argc, argv); // get user supplied argument for maximum grains
// HANDLE ATTRIBUTES
object_attr_setlong(x, gensym("stereo"), 0); // initialize stereo attribute
object_attr_setlong(x, gensym("w_interp"), 0); // initialize window interpolation attribute
object_attr_setlong(x, gensym("s_interp"), 1); // initialize window interpolation attribute
object_attr_setlong(x, gensym("zero"), 0); // initialize zero crossing attribute
attr_args_process(x, argc, argv); // get attribute values if supplied as argument
// CHECK IF USER SUPPLIED MAXIMUM GRAINS IS IN THE LEGAL RANGE (1 - MAXGRAINS)
if (x->grains_limit < 1 || x->grains_limit > MAXGRAINS) {
object_error((t_object *)x, "maximum grains allowed is %d", MAXGRAINS);
return NULL;
}
// CREATE OUTLETS (OUTLETS ARE CREATED FROM RIGHT TO LEFT)
x->grains_count_out = intout((t_object *)x); // create outlet for number of currently playing grains
outlet_new((t_object *)x, "signal"); // right signal outlet
outlet_new((t_object *)x, "signal"); // left signal outlet
// GET SYSTEM SAMPLE RATE
x->m_sr = sys_getsr() * 0.001; // get the current sample rate and write it into the object structure
/************************************************************************************************************************/
// ALLOCATE MEMORY FOR THE BUSY ARRAY
x->busy = (short *)sysmem_newptrclear((MAXGRAINS) * sizeof(short *));
if (x->busy == NULL) {
object_error((t_object *)x, "out of memory");
return NULL;
}
// ALLOCATE MEMORY FOR THE GRAINPOS ARRAY
x->grainpos = (long *)sysmem_newptrclear((MAXGRAINS) * sizeof(long *));
if (x->grainpos == NULL) {
object_error((t_object *)x, "out of memory");
return NULL;
}
// ALLOCATE MEMORY FOR THE START ARRAY
x->start = (long *)sysmem_newptrclear((MAXGRAINS) * sizeof(long *));
if (x->start == NULL) {
object_error((t_object *)x, "out of memory");
return NULL;
}
// ALLOCATE MEMORY FOR THE T_LENGTH ARRAY
x->t_length = (long *)sysmem_newptrclear((MAXGRAINS) * sizeof(long *));
if (x->t_length == NULL) {
object_error((t_object *)x, "out of memory");
return NULL;
}
// ALLOCATE MEMORY FOR THE GR_LENGTH ARRAY
x->gr_length = (long *)sysmem_newptrclear((MAXGRAINS) * sizeof(long *));
if (x->gr_length == NULL) {
object_error((t_object *)x, "out of memory");
return NULL;
}
// ALLOCATE MEMORY FOR THE PAN_LEFT ARRAY
x->pan_left = (double *)sysmem_newptrclear((MAXGRAINS) * sizeof(double *));
if (x->pan_left == NULL) {
object_error((t_object *)x, "out of memory");
return NULL;
}
// ALLOCATE MEMORY FOR THE PAN_RIGHT ARRAY
x->pan_right = (double *)sysmem_newptrclear((MAXGRAINS) * sizeof(double *));
if (x->pan_right == NULL) {
object_error((t_object *)x, "out of memory");
return NULL;
}
// ALLOCATE MEMORY FOR THE GAIN ARRAY
x->gain = (double *)sysmem_newptrclear((MAXGRAINS) * sizeof(double *));
if (x->gain == NULL) {
object_error((t_object *)x, "out of memory");
return NULL;
}
/************************************************************************************************************************/
// INITIALIZE VALUES
x->startmin_float = 0.0; // initialize float inlet value for current start min value
x->startmax_float = 0.0; // initialize float inlet value for current start max value
x->lengthmin_float = 150; // initialize float inlet value for min grain length
x->lengthmax_float = 150; // initialize float inlet value for max grain length
x->pitchmin_float = 1.0; // initialize inlet value for min pitch
x->pitchmax_float = 1.0; // initialize inlet value for min pitch
x->panmin_float = 0.0; // initialize value for min pan
x->panmax_float = 0.0; // initialize value for max pan
x->gainmin_float = 1.0; // initialize value for min gain
x->gainmax_float = 1.0; // initialize value for max gain
x->tr_prev = 0.0; // initialize value for previous trigger sample
x->grains_count = 0; // initialize the grains count value
x->grains_limit_old = 0; // initialize value for the routine when grains limit was modified
x->limit_modified = 0; // initialize channel change flag
x->buffer_modified = 0; // initialized buffer modified flag
/************************************************************************************************************************/
// BUFFER REFERENCES
x->buffer = buffer_ref_new((t_object *)x, x->buffer_name); // write the buffer reference into the object structure
x->w_buffer = buffer_ref_new((t_object *)x, x->window_name); // write the window buffer reference into the object structure
return x;
}
/************************************************************************************************************************/
/* THE 64 BIT DSP METHOD */
/************************************************************************************************************************/
void cmgrainlabs_dsp64(t_cmgrainlabs *x, t_object *dsp64, short *count, double samplerate, long maxvectorsize, long flags) {
x->connect_status[0] = count[1]; // 2nd inlet: write connection flag into object structure (1 if signal connected)
x->connect_status[1] = count[2]; // 3rd inlet: write connection flag into object structure (1 if signal connected)
x->connect_status[2] = count[3]; // 4th inlet: write connection flag into object structure (1 if signal connected)
x->connect_status[3] = count[4]; // 5th inlet: write connection flag into object structure (1 if signal connected)
x->connect_status[4] = count[5]; // 6th inlet: write connection flag into object structure (1 if signal connected)
x->connect_status[5] = count[6]; // 7th inlet: write connection flag into object structure (1 if signal connected)
x->connect_status[6] = count[7]; // 8th inlet: write connection flag into object structure (1 if signal connected)
x->connect_status[7] = count[8]; // 9th inlet: write connection flag into object structure (1 if signal connected)
x->connect_status[8] = count[9]; // 10th inlet: write connection flag into object structure (1 if signal connected)
x->connect_status[9] = count[10]; // 11th inlet: write connection flag into object structure (1 if signal connected)
if (x->m_sr != samplerate * 0.001) { // check if sample rate stored in object structure is the same as the current project sample rate
x->m_sr = samplerate * 0.001;
}
// CALL THE PERFORM ROUTINE
//object_method(dsp64, gensym("dsp_add64"), x, cmgrainlabs_perform64, 0, NULL);
dsp_add64(dsp64, (t_object*)x, (t_perfroutine64)cmgrainlabs_perform64, 0, NULL);
}
/************************************************************************************************************************/
/* THE 64 BIT PERFORM ROUTINE */
/************************************************************************************************************************/
void cmgrainlabs_perform64(t_cmgrainlabs *x, t_object *dsp64, double **ins, long numins, double **outs, long numouts, long sampleframes, long flags, void *userparam) {
// VARIABLE DECLARATIONS
short trigger = 0; // trigger occurred yes/no
long i, limit; // for loop counterS
long n = sampleframes; // number of samples per signal vector
double tr_curr; // current trigger value
double pan; // temporary random pan information
double pitch; // temporary pitch for new grains
double distance; // floating point index for reading from buffers
long index; // truncated index for reading from buffers
double w_read, b_read; // current sample read from the window buffer
double outsample_left = 0.0; // temporary left output sample used for adding up all grain samples
double outsample_right = 0.0; // temporary right output sample used for adding up all grain samples
int slot = 0; // variable for the current slot in the arrays to write grain info to
cm_panstruct panstruct; // struct for holding the calculated constant power left and right stereo values
// OUTLETS
t_double *out_left = (t_double *)outs[0]; // assign pointer to left output
t_double *out_right = (t_double *)outs[1]; // assign pointer to right output
// BUFFER VARIABLE DECLARATIONS
t_buffer_obj *buffer = buffer_ref_getobject(x->buffer);
t_buffer_obj *w_buffer = buffer_ref_getobject(x->w_buffer);
float *b_sample = buffer_locksamples(buffer);
float *w_sample = buffer_locksamples(w_buffer);
long b_framecount; // number of frames in the sample buffer
long w_framecount; // number of frames in the window buffer
t_atom_long b_channelcount; // number of channels in the sample buffer
t_atom_long w_channelcount; // number of channels in the window buffer
// BUFFER CHECKS
if (!b_sample) { // if the sample buffer does not exist
goto zero;
}
if (!w_sample) { // if the window buffer does not exist
goto zero;
}
// GET BUFFER INFORMATION
b_framecount = buffer_getframecount(buffer); // get number of frames in the sample buffer
w_framecount = buffer_getframecount(w_buffer); // get number of frames in the window buffer
b_channelcount = buffer_getchannelcount(buffer); // get number of channels in the sample buffer
w_channelcount = buffer_getchannelcount(w_buffer); // get number of channels in the sample buffer
// GET INLET VALUES
t_double *tr_sigin = (t_double *)ins[0]; // get trigger input signal from 1st inlet
t_double startmin = x->connect_status[0]? *ins[1] * x->m_sr : x->startmin_float * x->m_sr; // get start min input signal from 2nd inlet
t_double startmax = x->connect_status[1]? *ins[2] * x->m_sr : x->startmax_float * x->m_sr; // get start max input signal from 3rd inlet
t_double lengthmin = x->connect_status[2]? *ins[3] * x->m_sr : x->lengthmin_float * x->m_sr; // get grain min length input signal from 4th inlet
t_double lengthmax = x->connect_status[3]? *ins[4] * x->m_sr : x->lengthmax_float * x->m_sr; // get grain max length input signal from 5th inlet
t_double pitchmin = x->connect_status[4]? *ins[5] : x->pitchmin_float; // get pitch min input signal from 6th inlet
t_double pitchmax = x->connect_status[5]? *ins[6] : x->pitchmax_float; // get pitch max input signal from 7th inlet
t_double panmin = x->connect_status[6]? *ins[7] : x->panmin_float; // get min pan input signal from 8th inlet
t_double panmax = x->connect_status[7]? *ins[8] : x->panmax_float; // get max pan input signal from 9th inlet
t_double gainmin = x->connect_status[8]? *ins[9] : x->gainmin_float; // get min gain input signal from 10th inlet
t_double gainmax = x->connect_status[9]? *ins[10] : x->gainmax_float; // get max gain input signal from 10th inlet
// DSP LOOP
while (n--) {
tr_curr = *tr_sigin++; // get current trigger value
if (x->attr_zero) {
if (tr_curr > 0.0 && x->tr_prev < 0.0) { // zero crossing from negative to positive
trigger = 1;
}
}
else {
if ((x->tr_prev - tr_curr) > 0.9) {
trigger = 1;
}
}
if (x->buffer_modified) { // reset all playback information when any of the buffers was modified
for (i = 0; i < MAXGRAINS; i++) {
x->busy[i] = 0;
}
x->grains_count = 0;
x->buffer_modified = 0;
}
/************************************************************************************************************************/
// IN CASE OF TRIGGER, LIMIT NOT MODIFIED AND GRAINS COUNT IN THE LEGAL RANGE (AVAILABLE SLOTS)
if (trigger && x->grains_count < x->grains_limit && !x->limit_modified) { // based on zero crossing --> when ramp from 0-1 restarts.
trigger = 0; // reset trigger
x->grains_count++; // increment grains_count
// FIND A FREE SLOT FOR THE NEW GRAIN
i = 0;
while (i < x->grains_limit) {
if (!x->busy[i]) {
x->busy[i] = 1;
slot = i;
break;
}
i++;
}
/************************************************************************************************************************/
// GET RANDOM START POSITION
if (startmin != startmax) { // only call random function when min and max values are not the same!
x->start[slot] = (long)cm_random(&startmin, &startmax);
}
else {
x->start[slot] = startmin;
}
/************************************************************************************************************************/
// GET RANDOM LENGTH
if (lengthmin != lengthmax) { // only call random function when min and max values are not the same!
x->t_length[slot] = (long)cm_random(&lengthmin, &lengthmax);
}
else {
x->t_length[slot] = lengthmin;
}
// CHECK IF THE VALUE FOR PERCEPTIBLE GRAIN LENGTH IS LEGAL
if (x->t_length[slot] > MAX_GRAINLENGTH * x->m_sr) { // if grain length is larger than the max grain length
x->t_length[slot] = MAX_GRAINLENGTH * x->m_sr; // set grain length to max grain length
}
else if (x->t_length[slot] < MIN_GRAINLENGTH * x->m_sr) { // if grain length is samller than the min grain length
x->t_length[slot] = MIN_GRAINLENGTH * x->m_sr; // set grain length to min grain length
}
/************************************************************************************************************************/
// GET RANDOM PAN
if (panmin != panmax) { // only call random function when min and max values are not the same!
pan = cm_random(&panmin, &panmax);
}
else {
pan = panmin;
}
// SOME SANITY TESTING
if (pan < -1.0) {
pan = -1.0;
}
if (pan > 1.0) {
pan = 1.0;
}
cm_panning(&panstruct, &pan); // calculate pan values in panstruct
x->pan_left[slot] = panstruct.left;
x->pan_right[slot] = panstruct.right;
/************************************************************************************************************************/
// GET RANDOM PITCH
if (pitchmin != pitchmax) { // only call random function when min and max values are not the same!
pitch = cm_random(&pitchmin, &pitchmax);
}
else {
pitch = pitchmin;
}
// CHECK IF THE PITCH VALUE IS LEGAL
if (pitch < 0.001) {
pitch = 0.001;
}
if (pitch > MAX_PITCH) {
pitch = MAX_PITCH;
}
/************************************************************************************************************************/
// GET RANDOM GAIN
if (gainmin != gainmax) {
x->gain[slot] = cm_random(&gainmin, &gainmax);
}
else {
x->gain[slot] = gainmin;
}
// CHECK IF THE GAIN VALUE IS LEGAL
if (x->gain[slot] < 0.0) {
x->gain[slot] = 0.0;
}
if (x->gain[slot] > MAX_GAIN) {
x->gain[slot] = MAX_GAIN;
}
/************************************************************************************************************************/
// CALCULATE THE ACTUAL GRAIN LENGTH (SAMPLES) ACCORDING TO PITCH
x->gr_length[slot] = x->t_length[slot] * pitch;
// CHECK THAT GRAIN LENGTH IS NOT LARGER THAN SIZE OF BUFFER
if (x->gr_length[slot] > b_framecount) {
x->gr_length[slot] = b_framecount;
}
/************************************************************************************************************************/
// CHECK IF START POSITION IS LEGAL ACCORDING TO GRAINzLENGTH (SAMPLES) AND BUFFER SIZE
if (x->start[slot] > b_framecount - x->gr_length[slot]) {
x->start[slot] = b_framecount - x->gr_length[slot];
}
if (x->start[slot] < 0) {
x->start[slot] = 0;
}
}
/************************************************************************************************************************/
// CONTINUE WITH THE PLAYBACK ROUTINE
if (x->grains_count == 0) { // if grains count is zero, there is no playback to be calculated
*out_left++ = 0.0;
*out_right++ = 0.0;
}
else if (!b_sample) {
*out_left++ = 0.0;
*out_right++ = 0.0;
}
else if (!w_sample) {
*out_left++ = 0.0;
*out_right++ = 0.0;
}
else {
if (x->limit_modified) {
limit = x->grains_limit_old;
}
else {
limit = x->grains_limit;
}
for (i = 0; i < limit; i++) {
if (x->busy[i]) { // if the current slot contains grain playback information
// GET WINDOW SAMPLE FROM WINDOW BUFFER
if (x->attr_winterp) {
distance = ((double)x->grainpos[i] / (double)x->t_length[i]) * (double)w_framecount;
w_read = cm_lininterp(distance, w_sample, w_channelcount, 0);
}
else {
index = (long)(((double)x->grainpos[i] / (double)x->t_length[i]) * (double)w_framecount);
w_read = w_sample[index];
}
// GET GRAIN SAMPLE FROM SAMPLE BUFFER
distance = x->start[i] + (((double)x->grainpos[i]++ / (double)x->t_length[i]) * (double)x->gr_length[i]);
if (b_channelcount > 1 && x->attr_stereo) { // if more than one channel
if (x->attr_sinterp) {
outsample_left += ((cm_lininterp(distance, b_sample, b_channelcount, 0) * w_read) * x->pan_left[i]) * x->gain[i]; // get interpolated sample
outsample_right += ((cm_lininterp(distance, b_sample, b_channelcount, 1) * w_read) * x->pan_right[i]) * x->gain[i];
}
else {
outsample_left += ((b_sample[(long)distance * b_channelcount] * w_read) * x->pan_left[i]) * x->gain[i];
outsample_right += ((b_sample[((long)distance * b_channelcount) + 1] * w_read) * x->pan_right[i]) * x->gain[i];
}
}
else {
if (x->attr_sinterp) {
b_read = cm_lininterp(distance, b_sample, b_channelcount, 0) * w_read; // get interpolated sample
outsample_left += (b_read * x->pan_left[i]) * x->gain[i];
outsample_right += (b_read * x->pan_right[i]) * x->gain[i];
}
else {
outsample_left += ((b_sample[(long)distance * b_channelcount] * w_read) * x->pan_left[i]) * x->gain[i];
outsample_right += ((b_sample[(long)distance * b_channelcount] * w_read) * x->pan_right[i]) * x->gain[i];
}
}
if (x->grainpos[i] == x->t_length[i]) { // if current grain has reached the end position
x->grainpos[i] = 0; // reset parameters for overwrite
x->busy[i] = 0;
x->grains_count--;
if (x->grains_count < 0) {
x->grains_count = 0;
}
}
}
}
*out_left++ = outsample_left; // write added sample values to left output vector
*out_right++ = outsample_right; // write added sample values to right output vector
}
// CHECK IF GRAINS COUNT IS ZERO, THEN RESET LIMIT_MODIFIED CHECKFLAG
if (x->grains_count == 0) {
x->limit_modified = 0; // reset limit modified checkflag
}
/************************************************************************************************************************/
x->tr_prev = tr_curr; // store current trigger value in object structure
outsample_left = 0.0;
outsample_right = 0.0;
}
/************************************************************************************************************************/
// STORE UPDATED RUNNING VALUES INTO THE OBJECT STRUCTURE
buffer_unlocksamples(buffer);
buffer_unlocksamples(w_buffer);
outlet_int(x->grains_count_out, x->grains_count); // send number of currently playing grains to the outlet
return;
zero:
while (n--) {
*out_left++ = 0.0;
*out_right++ = 0.0;
}
buffer_unlocksamples(buffer);
buffer_unlocksamples(w_buffer);
return; // THIS RETURN WAS MISSING FOR A LONG, LONG TIME. MAYBE THIS HELPS WITH STABILITY!?
}
/************************************************************************************************************************/
/* ASSIST METHOD FOR INLET AND OUTLET ANNOTATION */
/************************************************************************************************************************/
void cmgrainlabs_assist(t_cmgrainlabs *x, void *b, long msg, long arg, char *dst) {
if (msg == ASSIST_INLET) {
switch (arg) {
case 0:
snprintf_zero(dst, 256, "(signal) trigger in");
break;
case 1:
snprintf_zero(dst, 256, "(signal/float) start min");
break;
case 2:
snprintf_zero(dst, 256, "(signal/float) start max");
break;
case 3:
snprintf_zero(dst, 256, "(signal/float) min grain length");
break;
case 4:
snprintf_zero(dst, 256, "(signal/float) max grain length");
break;
case 5:
snprintf_zero(dst, 256, "(signal/float) pitch min");
break;
case 6:
snprintf_zero(dst, 256, "(signal/float) pitch max");
break;
case 7:
snprintf_zero(dst, 256, "(signal/float) pan min");
break;
case 8:
snprintf_zero(dst, 256, "(signal/float) pan max");
break;
case 9:
snprintf_zero(dst, 256, "(signal/float) gain min");
break;
case 10:
snprintf_zero(dst, 256, "(signal/float) gain max");
break;
}
}
else if (msg == ASSIST_OUTLET) {
switch (arg) {
case 0:
snprintf_zero(dst, 256, "(signal) output ch1");
break;
case 1:
snprintf_zero(dst, 256, "(signal) output ch2");
break;
case 2:
snprintf_zero(dst, 256, "(int) current grain count");
break;
}
}
}
/************************************************************************************************************************/
/* FREE FUNCTION */
/************************************************************************************************************************/
void cmgrainlabs_free(t_cmgrainlabs *x) {
dsp_free((t_pxobject *)x); // free memory allocated for the object
object_free(x->buffer); // free the buffer reference
object_free(x->w_buffer); // free the window buffer reference
sysmem_freeptr(x->busy); // free memory allocated to the busy array
sysmem_freeptr(x->grainpos); // free memory allocated to the grainpos array
sysmem_freeptr(x->start); // free memory allocated to the start array
sysmem_freeptr(x->t_length); // free memory allocated to the t_length array
sysmem_freeptr(x->gr_length); // free memory allocated to the t_length array
sysmem_freeptr(x->pan_left); // free memory allocated to the pan_left array
sysmem_freeptr(x->pan_right); // free memory allocated to the pan_right array
sysmem_freeptr(x->gain); // free memory allocated to the gain array
}
/************************************************************************************************************************/
/* FLOAT METHOD FOR FLOAT INLET SUPPORT */
/************************************************************************************************************************/
void cmgrainlabs_float(t_cmgrainlabs *x, double f) {
double dump;
int inlet = ((t_pxobject*)x)->z_in; // get info as to which inlet was addressed (stored in the z_in component of the object structure
switch (inlet) {
case 1: // first inlet
if (f < 0.0) {
dump = f;
}
else {
x->startmin_float = f;
}
break;
case 2: // second inlet
if (f < 0.0) {
dump = f;
}
else {
x->startmax_float = f;
}
break;
case 3: // 4th inlet
if (f < MIN_GRAINLENGTH) {
dump = f;
}
else if (f > MAX_GRAINLENGTH) {
dump = f;
}
else {
x->lengthmin_float = f;
}
break;
case 4: // 5th inlet
if (f < MIN_GRAINLENGTH) {
dump = f;
}
else if (f > MAX_GRAINLENGTH) {
dump = f;
}
else {
x->lengthmax_float = f;
}
break;
case 5: // 6th inlet
if (f <= 0.0) {
dump = f;
}
else if (f > MAX_PITCH) {
dump = f;
}
else {
x->pitchmin_float = f;
}
break;
case 6: // 7th inlet
if (f <= 0.0) {
dump = f;
}
else if (f > MAX_PITCH) {
dump = f;
}
else {
x->pitchmax_float = f;
}
break;
case 7:
if (f < -1.0 || f > 1.0) {
dump = f;
}
else {
x->panmin_float = f;
}
break;
case 8:
if (f < -1.0 || f > 1.0) {
dump = f;
}
else {
x->panmax_float = f;
}
break;
case 9:
if (f < 0.0 || f > MAX_GAIN) {
dump = f;
}
else {
x->gainmin_float = f;
}
break;
case 10:
if (f < 0.0 || f > MAX_GAIN) {
dump = f;
}
else {
x->gainmax_float = f;
}
break;
}
}
/************************************************************************************************************************/
/* DOUBLE CLICK METHOD FOR VIEWING BUFFER CONTENT */
/************************************************************************************************************************/
void cmgrainlabs_dblclick(t_cmgrainlabs *x) {
buffer_view(buffer_ref_getobject(x->buffer));
buffer_view(buffer_ref_getobject(x->w_buffer));
}
/************************************************************************************************************************/
/* NOTIFY METHOD FOR THE BUFFER REFERENCES */
/************************************************************************************************************************/
t_max_err cmgrainlabs_notify(t_cmgrainlabs *x, t_symbol *s, t_symbol *msg, void *sender, void *data) {
t_symbol *buffer_name = (t_symbol *)object_method((t_object *)sender, gensym("getname"));
if (msg == ps_buffer_modified) {
x->buffer_modified = 1;
}
if (buffer_name == x->window_name) { // check if calling object was the window buffer
return buffer_ref_notify(x->w_buffer, s, msg, sender, data); // return with the calling buffer
}
else if (buffer_name == x->buffer_name) { // check if calling object was the sample buffer
return buffer_ref_notify(x->buffer, s, msg, sender, data); // return with the calling buffer
}
else { // if calling object was none of the expected buffers
return MAX_ERR_NONE; // return generic MAX_ERR_NONE
}
}
/************************************************************************************************************************/
/* THE BUFFER SET METHOD */
/************************************************************************************************************************/
void cmgrainlabs_set(t_cmgrainlabs *x, t_symbol *s, long ac, t_atom *av) {
if (ac == 2) {
x->buffer_modified = 1;
x->buffer_name = atom_getsym(av); // write buffer name into object structure
x->window_name = atom_getsym(av+1); // write buffer name into object structure
buffer_ref_set(x->buffer, x->buffer_name);
buffer_ref_set(x->w_buffer, x->window_name);
if (buffer_getchannelcount((t_object *)(buffer_ref_getobject(x->buffer))) > 2) {
object_error((t_object *)x, "referenced sample buffer has more than 2 channels. using channels 1 and 2.");
}
if (buffer_getchannelcount((t_object *)(buffer_ref_getobject(x->w_buffer))) > 1) {
object_error((t_object *)x, "referenced window buffer has more than 1 channel. expect strange results.");
}
}
else {
object_error((t_object *)x, "%d arguments required (sample/window)", 2);
}
}
/************************************************************************************************************************/
/* THE GRAINS LIMIT METHOD */
/************************************************************************************************************************/
void cmgrainlabs_limit(t_cmgrainlabs *x, t_symbol *s, long ac, t_atom *av) {
long arg;
arg = atom_getlong(av);
if (arg < 1 || arg > MAXGRAINS) {
object_error((t_object *)x, "value must be in the range 1 - %d", MAXGRAINS);
}
else {
x->grains_limit_old = x->grains_limit;
x->grains_limit = arg;
x->limit_modified = 1;
}
}
/************************************************************************************************************************/
/* THE STEREO ATTRIBUTE SET METHOD */
/************************************************************************************************************************/
t_max_err cmgrainlabs_stereo_set(t_cmgrainlabs *x, t_object *attr, long ac, t_atom *av) {
if (ac && av) {
x->attr_stereo = atom_getlong(av)? 1 : 0;
}
return MAX_ERR_NONE;
}
/************************************************************************************************************************/
/* THE WINDOW INTERPOLATION ATTRIBUTE SET METHOD */
/************************************************************************************************************************/
t_max_err cmgrainlabs_winterp_set(t_cmgrainlabs *x, t_object *attr, long ac, t_atom *av) {
if (ac && av) {
x->attr_winterp = atom_getlong(av)? 1 : 0;
}
return MAX_ERR_NONE;
}
/************************************************************************************************************************/
/* THE SAMPLE INTERPOLATION ATTRIBUTE SET METHOD */
/************************************************************************************************************************/
t_max_err cmgrainlabs_sinterp_set(t_cmgrainlabs *x, t_object *attr, long ac, t_atom *av) {
if (ac && av) {
x->attr_sinterp = atom_getlong(av)? 1 : 0;
}
return MAX_ERR_NONE;
}
/************************************************************************************************************************/
/* THE ZERO CROSSING ATTRIBUTE SET METHOD */
/************************************************************************************************************************/
t_max_err cmgrainlabs_zero_set(t_cmgrainlabs *x, t_object *attr, long ac, t_atom *av) {
if (ac && av) {
x->attr_zero = atom_getlong(av)? 1 : 0;
}
return MAX_ERR_NONE;
}