-
Notifications
You must be signed in to change notification settings - Fork 81
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
TeslaDecrypt version 0.2 - Added support for the Elliptic Curve Cryptography used in AlphaCrypt
- Loading branch information
Showing
16 changed files
with
941 additions
and
223 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,331 @@ | ||
/* | ||
* Copyright (C) 2015 Cisco Talos Security Intelligence and Research Group | ||
* | ||
* Authors: Andrea Allievi and Emmanuel Tacheau | ||
* | ||
* This program is free software; you can redistribute it and/or modify | ||
* it under the terms of the GNU General Public License version 2 as | ||
* published by the Free Software Foundation. | ||
* | ||
* This program is distributed in the hope that it will be useful, | ||
* but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
* GNU General Public License for more details. | ||
* | ||
* You should have received a copy of the GNU General Public License | ||
* along with this program; if not, write to the Free Software | ||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, | ||
* MA 02110-1301, USA. | ||
* | ||
* Filename: AlphaCrypt.cpp | ||
* Contains the code needed to properly deal with the Elliptic | ||
* Curve encryption of the latest AlphaCrypt droppers | ||
* Last revision: 01/06/2015 | ||
*/ | ||
|
||
#include "StdAfx.h" | ||
#include "AlphaCrypt.h" | ||
|
||
// OpenSSL EC specific files: | ||
#include "openssl\\ecdh.h" | ||
#include "openssl\\ec_lcl.h" | ||
#include "openssl\\ech_locl.h" | ||
|
||
// Set the default AlphaCrypt Curve ID (SECG curve over a 256 bit prime field) | ||
const int CAlphaCrypt::g_iCurveId = NID_secp256k1; | ||
|
||
// Constructor with the associated log | ||
CAlphaCrypt::CAlphaCrypt(CLog * pLog): | ||
g_pLog(NULL), | ||
g_bIsMyLog(false) | ||
{ | ||
if (!pLog) { | ||
// Initialize an empty log | ||
g_pLog = new CLog(); | ||
g_bIsMyLog = true; | ||
} else { | ||
g_pLog = pLog; | ||
g_bIsMyLog = false; | ||
} | ||
} | ||
|
||
// Default class destructor | ||
CAlphaCrypt::~CAlphaCrypt(void) | ||
{ | ||
if (g_bIsMyLog && g_pLog) { | ||
g_pLog->Close(); | ||
delete g_pLog; | ||
} | ||
} | ||
|
||
// Binary to hex conversion | ||
LPSTR CAlphaCrypt::bin2hex(LPBYTE buff, DWORD dwBuffLen) { | ||
const LPSTR hexMap = "0123456789ABCDEF"; | ||
DWORD strLen = dwBuffLen * 2 + 1; | ||
LPSTR hexBuff = new CHAR[strLen]; | ||
RtlZeroMemory(hexBuff, strLen); | ||
|
||
for (int i = 0; i < (int)dwBuffLen; i ++) { | ||
BYTE curByte = buff[i]; | ||
hexBuff[(i*2)] = hexMap[curByte >> 4]; | ||
hexBuff[(i*2)+1] = hexMap[curByte & 0xF]; | ||
} | ||
return hexBuff; | ||
} | ||
|
||
// Get if a buffer represent an Hex string | ||
bool CAlphaCrypt::IsBuffAnHexString(LPBYTE buff, DWORD dwLen, bool bUnicode) { | ||
bool bIsBinary = false; | ||
LPTSTR uStr = (LPTSTR)buff; | ||
if (!buff || dwLen < 1 || (dwLen % 2) > 0) | ||
return false; | ||
|
||
if (!bUnicode) { | ||
// ASCII check | ||
for (int i = 0; i < (int)dwLen; i++) { | ||
// Verify if the key is in hex digits or in standard binary digits | ||
bool bIsHexDigit = | ||
(buff[i] >= '0' && buff[i] <= '9') || | ||
(buff[i] >= 'A' && buff[i] <= 'F'); | ||
if (!bIsHexDigit) { | ||
bIsBinary = true; | ||
break; | ||
} | ||
} | ||
} | ||
else { | ||
// Unicode check | ||
if ((dwLen % 4) > 0) return false; | ||
for (int i = 0; i < (int)(dwLen / 2); i++) { | ||
// Verify if the key is in hex digits or in standard binary digits | ||
bool bIsHexDigit = | ||
(uStr[i] >= L'0' && uStr[i] <= L'9') || | ||
(uStr[i] >= L'A' && uStr[i] <= L'F'); | ||
if (!bIsHexDigit) { | ||
bIsBinary = true; | ||
break; | ||
} | ||
} | ||
} | ||
return (!bIsBinary); | ||
} | ||
|
||
// Get the AlphaCrypt default PEER public Key | ||
EC_POINT * CAlphaCrypt::GetAlphaCryptPublicKey() { | ||
EC_KEY * lpPublicCurve = NULL; // Curve that contains the public key | ||
EC_POINT * pubKey = NULL; // Public key generated from the 2 coordinates | ||
const LPSTR XCoordHex = "46668077A4449322CA896BD64901DE333156B6FEAE75ABE5D4922A039B3CD013"; | ||
const LPSTR YCoordHex = "304AB8B3F15F498094F14058A1D1EBE823BEF512D44210CC50BBD94128D2CD05"; | ||
BIGNUM * pBnX = NULL, * pBnY = NULL; | ||
int iRet = 0; | ||
|
||
// Allocate the 2 points structures | ||
pBnX = BN_new(); pBnY = BN_new(); | ||
|
||
// Get X and Y Coordinate | ||
BN_hex2bn(&pBnX, XCoordHex); | ||
BN_hex2bn(&pBnY, YCoordHex); | ||
|
||
// Create the curve that contains the public key | ||
lpPublicCurve = EC_KEY_new_by_curve_name(NID_secp256k1); | ||
|
||
// Create the generator | ||
pubKey = EC_POINT_new(lpPublicCurve->group); | ||
|
||
// Generate the Public key and verify it | ||
EC_POINT_set_affine_coordinates_GFp(lpPublicCurve->group, pubKey, pBnX, pBnY, NULL); | ||
EC_KEY_set_public_key(lpPublicCurve, pubKey); | ||
iRet = EC_KEY_check_key(lpPublicCurve); | ||
|
||
// Cleanup | ||
EC_KEY_free(lpPublicCurve); | ||
BN_free(pBnX); BN_free(pBnY); | ||
|
||
if (iRet) | ||
return pubKey; | ||
else | ||
EC_POINT_free(pubKey); | ||
return NULL; | ||
} | ||
|
||
// Generate a Shared secret key from | ||
BIGNUM * CAlphaCrypt::GenerateSharedSecretKey(BIGNUM * pMasterKey, EC_POINT * lpPeerPubKey) { | ||
EC_KEY * lpFullCurve = NULL; // Full elliptic curve | ||
EC_POINT * pubKey = NULL; // The peer public key (bad guys one) | ||
ECDH_DATA * ecdh_data = NULL; // Elliptic Curve data structure | ||
BYTE secretKey[0x20] = {0}; // Shared secret key | ||
BIGNUM * pSecretBn = NULL; // Secret shared key BIGNUM | ||
int iRet = 0; | ||
|
||
if (!lpPeerPubKey) | ||
// Get the default AlphaCrypt peer public key | ||
pubKey = GetAlphaCryptPublicKey(); // DON'T forget to delete it, damn heck! :-) | ||
else | ||
// Don't delete the following one: | ||
pubKey = lpPeerPubKey; | ||
|
||
if (!pubKey) return NULL; | ||
|
||
// Create the FULL curve that contains public/private key pair | ||
lpFullCurve = EC_KEY_new_by_curve_name(NID_secp256k1); | ||
//EC_KEY_set_public_key(lpFullCurve, pStartKey); // No my own public key (I need to calculate it) | ||
iRet = SetPrivateKey(lpFullCurve, pMasterKey); | ||
iRet = EC_KEY_check_key(lpFullCurve); | ||
|
||
// Compute the shared secret key | ||
ecdh_data = ecdh_check(lpFullCurve); | ||
if (ecdh_data) | ||
ecdh_data->meth = ECDH_OpenSSL(); | ||
// Calculate shared secret key: My private Key * Peer public key | ||
iRet = ECDH_compute_key(secretKey, 0x20, pubKey, lpFullCurve, NULL); | ||
|
||
// Convert the secret key in a BIGNUMBER | ||
pSecretBn = BN_bin2bn(secretKey, 0x20, NULL); | ||
|
||
/*//////////////////////////////////////////////////////////////////////// | ||
// Brief explaination: // | ||
Here is what "ECDH_compute_key" does: | ||
Calculate "da * Qb" (that is equal to "da * db * G"). Where: | ||
da = my ownPrivate key (the master key) | ||
Qb = the peer Public key (standard one inserted in AlphaCrypt) | ||
*//////////////////////////////////////////////////////////////////////// | ||
|
||
// Cleanup | ||
EC_KEY_free(lpFullCurve); | ||
if (pubKey != lpPeerPubKey) | ||
EC_POINT_free(pubKey); | ||
return pSecretBn; | ||
} | ||
|
||
|
||
// Verify the Recovery key for an AlphaCrypt infection | ||
bool CAlphaCrypt::VerifyRecoveryKey(BIGNUM * pMasterKey, BIGNUM * pRecKey) { | ||
// secp256k1 elliptic Curve | ||
EC_GROUP * lpCurve = NULL; | ||
// Big Number Context structure | ||
BN_CTX * lpBnCtx = NULL; | ||
// Start public key | ||
EC_POINT * pubMasterKey = NULL; | ||
BIGNUM * lpBnSecret = NULL, // The shared secret key | ||
* pNewRecKey = NULL; // New Calculated Recovery Key | ||
// Set if the recovery key is verified | ||
bool bOkRecKey = false; | ||
int iRet = 0; | ||
|
||
// Allocate the new curve | ||
lpCurve = EC_GROUP_new_by_curve_name(NID_secp256k1); | ||
// Allocate the context for the Big Numbers operation | ||
lpBnCtx = BN_CTX_new(); | ||
pubMasterKey = EC_POINT_new(lpCurve); | ||
|
||
// Compute my own initial public key (Qa = da * G) | ||
iRet = EC_POINT_mul(lpCurve, pubMasterKey, pMasterKey, NULL, NULL, lpBnCtx); | ||
|
||
if (iRet) { | ||
lpBnSecret = GenerateSharedSecretKey(pMasterKey, NULL); | ||
|
||
// Generate the ReCovery Key | ||
pNewRecKey = BN_new(); | ||
BN_mul(pNewRecKey, lpBnSecret, pMasterKey, lpBnCtx); | ||
if (BN_cmp(pNewRecKey, pRecKey) == 0) | ||
bOkRecKey = true; | ||
|
||
// Cleanup | ||
BN_free(pNewRecKey); | ||
BN_free(lpBnSecret); | ||
} | ||
|
||
// Cleanup | ||
EC_POINT_free(pubMasterKey); | ||
BN_CTX_free(lpBnCtx); | ||
EC_GROUP_free(lpCurve); | ||
return bOkRecKey; | ||
} | ||
|
||
// Set the private key to a full-fledged curve | ||
bool CAlphaCrypt::SetPrivateKey(EC_KEY * lpCurve, BIGNUM * lpPrivateKey) { | ||
BIGNUM * lpBnCopy = NULL; | ||
if (!lpPrivateKey) return false; | ||
if (lpCurve->priv_key) { | ||
// Free the resource of this private key | ||
BN_free(lpCurve->priv_key); | ||
} | ||
|
||
// Copy the private key | ||
lpBnCopy = BN_new(); | ||
if (!BN_copy(lpBnCopy, lpPrivateKey)) { | ||
BN_free(lpBnCopy); | ||
return false; | ||
} | ||
lpCurve->priv_key = lpBnCopy; | ||
return true; | ||
} | ||
|
||
// Verify AlphaCrypt Master Key | ||
bool CAlphaCrypt::VerifyAlphaMasterKey(BYTE masterKey[32], LPSTR recKey) { | ||
BIGNUM * bnPrivKey = NULL, // My private key (master key) | ||
* bnRecKey = NULL; // My recovery key | ||
int len = 0; // The length of the recovery key string | ||
bool bRetVal = false; | ||
|
||
// Get the master key | ||
bnPrivKey = BN_bin2bn(masterKey, 0x20, NULL); | ||
// Get the recovery key | ||
len = BN_hex2bn(&bnRecKey, recKey); | ||
|
||
if (bnPrivKey && bnRecKey && | ||
len >= 0x80) | ||
bRetVal = VerifyRecoveryKey(bnPrivKey, bnRecKey); | ||
|
||
if (bnPrivKey) BN_free(bnPrivKey); | ||
if (bnRecKey) BN_free(bnRecKey); | ||
return bRetVal; | ||
} | ||
|
||
bool CAlphaCrypt::VerifyAlphaMasterKey(BYTE masterKey[32], BYTE recKey[0x40]) { | ||
LPSTR recKeyHex = bin2hex(recKey, 0x40); | ||
bool bRetVal = VerifyAlphaMasterKey(masterKey, recKeyHex); | ||
if (recKeyHex) delete recKeyHex ; | ||
return bRetVal; | ||
} | ||
|
||
// Calculate the inverse of a key (needed in latest version of AlphaCrypt) | ||
bool CAlphaCrypt::GetTheInverse(BYTE key[32], BYTE inverse[32]) { | ||
bool bRetVal = true; | ||
BIGNUM * lpBnKey = NULL; // The master key | ||
EC_GROUP * lpCurve = NULL; // secp256k1 elliptic Curve | ||
BYTE buff[0x100] = {0}; // Big buffer to prevent buffer overflow conditions | ||
int len = 0; | ||
BN_CTX * lpBnCtx = NULL; // Big Number Context structure | ||
|
||
// Allocate the BIGNUMBER that host the master key, the curve and the context | ||
lpBnKey = BN_bin2bn(key, 0x20, NULL); | ||
lpCurve = EC_GROUP_new_by_curve_name(g_iCurveId); | ||
lpBnCtx = BN_CTX_new(); | ||
|
||
if (!lpBnKey || !lpCurve || !lpBnCtx) { | ||
// Not enough available memory space - it's very unlikely that this will happen | ||
WriteToLog(L"CAlphaCrypt::GetTheInverse - Not enough available system resources to complete the process."); | ||
bRetVal = false; | ||
} | ||
|
||
// Calculate the new Master key | ||
if (bRetVal && BN_mod_inverse(lpBnKey, lpBnKey, &lpCurve->order, lpBnCtx) != NULL) | ||
// Save the new key | ||
len = BN_bn2bin(lpBnKey, buff); | ||
|
||
if (len == 0x20) { | ||
RtlCopyMemory(inverse, buff, 0x20); | ||
bRetVal = true; | ||
} | ||
else | ||
bRetVal = false; | ||
|
||
// Free the resource needed by CONTEXT and BIGNUM structure | ||
if (lpBnKey) BN_free(lpBnKey); | ||
if (lpBnCtx) BN_CTX_free(lpBnCtx); | ||
if (lpCurve) EC_GROUP_free(lpCurve); | ||
|
||
return bRetVal; | ||
|
||
} |
Oops, something went wrong.