Skip to content

Latest commit

 

History

History
111 lines (82 loc) · 3.37 KB

README.md

File metadata and controls

111 lines (82 loc) · 3.37 KB

image

Clarifai Java gRPC Client

This is the official Clarifai gRPC Java client for interacting with our powerful recognition API. Clarifai provides a platform for data scientists, developers, researchers and enterprises to master the entire artificial intelligence lifecycle. Gather valuable business insights from images, video and text using computer vision and natural language processing.

Download Build

Installation

Via Gradle:

repositories {
    mavenCentral()
}

dependencies {
    implementation 'com.clarifai:clarifai-grpc:LATEST_VERSION'
}

Via Maven:

<repositories>
    <repository>
        <id>mavenCentral</id>
        <name>mavenCentral</name>
        <url>http://repo1.maven.org/maven2</url>
    </repository>
</repositories>

<dependencies>
    <dependency>
        <groupId>com.clarifai</groupId>
        <artifactId>clarifai-grpc</artifactId>
        <version>LATEST_VERSION</version>
    </dependency>
</dependencies>

Versioning

This library doesn't use semantic versioning. The first two version numbers (X.Y out of X.Y.Z) follow the API (backend) versioning, and whenever the API gets updated, this library follows it.

The third version number (Z out of X.Y.Z) is used by this library for any independent releases of library-specific improvements and bug fixes.

Getting started

Construct the Stub object using which you'll access all the Clarifai API functionality:

import com.clarifai.channel.ClarifaiChannel;
import io.grpc.Channel;

...

V2Grpc.V2BlockingStub stub = V2Grpc.newBlockingStub(ClarifaiChannel.INSTANCE.getGrpcChannel())
    .withCallCredentials(new ClarifaiCallCredentials("YOUR_CLARIFAI_API_KEY"));

Alternatives to the encrypted gRPC channel (ClarifaiChannel.INSTANCE.getGrpcChannel()) are:

  • the HTTPS+JSON channel (ClarifaiChannel.INSTANCE.getJsonChannel()), and
  • the unencrypted gRPC channel (ClarifaiChannel.INSTANCE.getInsecureGrpcChannel()).

We only recommend them in special cases.

Predict concepts in an image:

import com.clarifai.credentials.ClarifaiCallCredentials;
import com.clarifai.grpc.api.*;
import com.clarifai.grpc.api.status.StatusCode;

...

MultiOutputResponse response = stub.postModelOutputs(
    PostModelOutputsRequest.newBuilder()
        .setModelId("aaa03c23b3724a16a56b629203edc62c")
        .addInputs(
            Input.newBuilder().setData(
                Data.newBuilder().setImage(
                    Image.newBuilder().setUrl("YOUR_IMAGE_URL")
                )
            )
        )
        .build()
);

if (response.getStatus().getCode() != StatusCode.SUCCESS) {
  throw new RuntimeException("Request failed, status: " + response.getStatus());
}

for (Concept c : response.getOutputs(0).getData().getConceptsList()) {
  System.out.println(String.format("%12s: %,.2f", c.getName(), c.getValue()));
}