-
Notifications
You must be signed in to change notification settings - Fork 46
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add inference notebooks for biomasters & chesapeake
- Loading branch information
Showing
2 changed files
with
626 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,308 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "4e9c5b75-623e-447a-a62f-1bec5c2da0e7", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import sys\n", | ||
"import warnings\n", | ||
"\n", | ||
"sys.path.append(\"../../\")\n", | ||
"warnings.filterwarnings(\"ignore\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "a6fc54a3-7123-4a29-ada8-0344665fd9d0", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import torch\n", | ||
"import torch.nn.functional as F\n", | ||
"import matplotlib.pyplot as plt\n", | ||
"import numpy as np\n", | ||
"from einops import rearrange\n", | ||
"from finetune.regression.biomasters_datamodule import BioMastersDataModule\n", | ||
"from finetune.regression.biomasters_model import BioMastersClassifier" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "cd1be1f5-2a55-47b3-8d55-5a87683eb4ba", | ||
"metadata": {}, | ||
"source": [ | ||
"### Define paths and parameters" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "a6c65362-dc3d-44c3-a992-fe15ad26d519", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"BIOMASTERS_CHECKPOINT_PATH = \"../../checkpoints/regression/biomasters_epoch-33_val-score-36.606.ckpt\"\n", | ||
"CLAY_CHECKPOINT_PATH = \"../../checkpoints/clay-v1-base.ckpt\"\n", | ||
"METADATA_PATH = \"../../configs/metadata.yaml\"\n", | ||
"\n", | ||
"TRAIN_CHIP_DIR = \"../../data/biomasters/train_cube/\"\n", | ||
"TRAIN_LABEL_DIR = \"../../data/biomasters/train_agbm/\"\n", | ||
"VAL_CHIP_DIR = \"../../data/biomasters/test_cube/\"\n", | ||
"VAL_LABEL_DIR = \"../../data/biomasters/test_agbm/\"\n", | ||
"\n", | ||
"BATCH_SIZE = 32\n", | ||
"NUM_WORKERS = 1" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "18665299-f505-4ae4-8c12-09d6dbce9d9c", | ||
"metadata": {}, | ||
"source": [ | ||
"### Model Loading" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "d39eda04-771d-4a51-914a-0aa9eb5f54a8", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"def get_model(biomasters_checkpoint_path, clay_checkpoint_path, metadata_path):\n", | ||
" model = BioMastersClassifier.load_from_checkpoint(\n", | ||
" checkpoint_path=biomasters_checkpoint_path,\n", | ||
" metadata_path=metadata_path,\n", | ||
" ckpt_path=clay_checkpoint_path,\n", | ||
" )\n", | ||
" model.eval()\n", | ||
" return model" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "4cfb9f4f-1765-480d-95dc-1def32459f95", | ||
"metadata": {}, | ||
"source": [ | ||
"### Data Preparation" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "a5738b71-ac76-4b3b-ac8f-92fdcfa49d20", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"def get_data(train_chip_dir, train_label_dir, val_chip_dir, val_label_dir, metadata_path, batch_size, num_workers):\n", | ||
" dm = BioMastersDataModule(\n", | ||
" train_chip_dir=train_chip_dir,\n", | ||
" train_label_dir=train_label_dir,\n", | ||
" val_chip_dir=val_chip_dir,\n", | ||
" val_label_dir=val_label_dir,\n", | ||
" metadata_path=metadata_path,\n", | ||
" batch_size=batch_size,\n", | ||
" num_workers=num_workers\n", | ||
" )\n", | ||
" dm.setup(stage=\"fit\")\n", | ||
" val_dl = iter(dm.val_dataloader())\n", | ||
" batch = next(val_dl)\n", | ||
" metadata = dm.metadata\n", | ||
" return batch, metadata" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "adb781e5-077d-401b-9d99-e63cfc92ea1b", | ||
"metadata": {}, | ||
"source": [ | ||
"### Prediction" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "daff7782-c808-4639-89fe-4d18e28f9ec8", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"def run_prediction(model, batch):\n", | ||
" with torch.no_grad():\n", | ||
" outputs = model(batch)\n", | ||
" outputs = F.interpolate(outputs, size=(256, 256), mode='bilinear', align_corners=False)\n", | ||
" return outputs" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "a7bf3e2c-9de1-487a-bc2e-438bf06de482", | ||
"metadata": {}, | ||
"source": [ | ||
"### Post-Processing" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "77a30bde-c300-4d5d-a588-3d4dcd40e2e2", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"def denormalize_images(normalized_images, means, stds):\n", | ||
" means = np.array(means).reshape(1, -1, 1, 1)\n", | ||
" stds = np.array(stds).reshape(1, -1, 1, 1)\n", | ||
" denormalized_images = normalized_images * stds + means\n", | ||
" return denormalized_images\n", | ||
"\n", | ||
"def post_process(batch, outputs, metadata):\n", | ||
" labels = batch[\"label\"].detach().cpu().numpy()\n", | ||
" pixels = batch[\"pixels\"].detach().cpu().numpy()\n", | ||
" outputs = outputs.detach().cpu().numpy()\n", | ||
"\n", | ||
" means = list(metadata[\"sentinel-2-l2a\"].bands.mean.values())\n", | ||
" stds = list(metadata[\"sentinel-2-l2a\"].bands.std.values())\n", | ||
" norm_pixels = denormalize_images(pixels, means, stds)\n", | ||
" \n", | ||
" images = rearrange(norm_pixels[:, :3, :, :], \"b c h w -> b h w c\")\n", | ||
" \n", | ||
" labels = np.clip(labels.squeeze(axis=1), 0, 400)\n", | ||
" outputs = np.clip(outputs.squeeze(axis=1), 0, 400)\n", | ||
" images = np.clip(images / 2000, 0, 1)\n", | ||
"\n", | ||
" return images, labels, outputs" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "fac21c4c-88c6-43aa-8f1e-f8260ceb213c", | ||
"metadata": {}, | ||
"source": [ | ||
"### Plotting" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "140783b8-84ad-4ad3-9a10-1fce8ff0db80", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"def plot_predictions(images, labels, outputs):\n", | ||
" fig, axes = plt.subplots(12, 8, figsize=(12, 18))\n", | ||
"\n", | ||
" # Plot the images\n", | ||
" plot_data(axes, images, row_offset=0, title=\"Image\")\n", | ||
"\n", | ||
" # Plot the actual segmentation maps\n", | ||
" plot_data(axes, labels, row_offset=1, title=\"Actual\")\n", | ||
"\n", | ||
" # Plot the predicted segmentation maps\n", | ||
" plot_data(axes, outputs, row_offset=2, title=\"Pred\")\n", | ||
"\n", | ||
" plt.tight_layout()\n", | ||
" plt.show()\n", | ||
"\n", | ||
"def plot_data(ax, data, row_offset, title=None):\n", | ||
" for i, item in enumerate(data):\n", | ||
" row = row_offset + (i // 8) * 3\n", | ||
" col = i % 8\n", | ||
" ax[row, col].imshow(item, cmap='cividis')\n", | ||
" ax[row, col].axis('off')\n", | ||
" if title and col == 0:\n", | ||
" ax[row, col].set_title(title, rotation=0, fontsize=12)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "f06754b6-080e-4be3-b433-cd1cf8b760c1", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Load model\n", | ||
"model = get_model(BIOMASTERS_CHECKPOINT_PATH, CLAY_CHECKPOINT_PATH, METADATA_PATH)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "dc82cbf6-45cd-46fb-b58e-0959029732be", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Get data\n", | ||
"batch, metadata = get_data(\n", | ||
" TRAIN_CHIP_DIR, TRAIN_LABEL_DIR, VAL_CHIP_DIR, VAL_LABEL_DIR, METADATA_PATH, BATCH_SIZE, NUM_WORKERS\n", | ||
")\n", | ||
"# Move batch to GPU\n", | ||
"batch = {k: v.to(\"cuda\") for k, v in batch.items()}" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "611a2b9e-8181-4033-b63c-80a6018ccbb9", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Run prediction\n", | ||
"outputs = run_prediction(model, batch)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "da3e1034-3cf7-45ff-afd7-a3f1e748d829", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Post-process the results\n", | ||
"images, labels, outputs = post_process(batch, outputs, metadata)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "ab0a9497-8769-40c7-b5c6-de3f2e5aac14", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Plot the predictions\n", | ||
"plot_predictions(images, labels, outputs)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "ffa83c77-9e2e-4e8c-aa30-0966c38ccef9", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3 (ipykernel)", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.10.12" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |
Oops, something went wrong.