forked from leejet/stable-diffusion.cpp
-
Notifications
You must be signed in to change notification settings - Fork 1
/
upscaler.cpp
127 lines (113 loc) · 4.52 KB
/
upscaler.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
#include "esrgan.hpp"
#include "ggml_extend.hpp"
#include "model.h"
#include "stable-diffusion.h"
struct UpscalerGGML {
ggml_backend_t backend = NULL; // general backend
ggml_type model_data_type = GGML_TYPE_F16;
std::shared_ptr<ESRGAN> esrgan_upscaler;
std::string esrgan_path;
int n_threads;
UpscalerGGML(int n_threads)
: n_threads(n_threads) {
}
bool load_from_file(const std::string& esrgan_path) {
#ifdef SD_USE_CUBLAS
LOG_DEBUG("Using CUDA backend");
backend = ggml_backend_cuda_init(0);
#endif
#ifdef SD_USE_METAL
LOG_DEBUG("Using Metal backend");
ggml_backend_metal_log_set_callback(ggml_log_callback_default, nullptr);
backend = ggml_backend_metal_init();
#endif
#ifdef SD_USE_VULKAN
LOG_DEBUG("Using Vulkan backend");
backend = ggml_backend_vk_init(0);
#endif
if (!backend) {
LOG_DEBUG("Using CPU backend");
backend = ggml_backend_cpu_init();
}
LOG_INFO("Upscaler weight type: %s", ggml_type_name(model_data_type));
esrgan_upscaler = std::make_shared<ESRGAN>(backend, model_data_type);
if (!esrgan_upscaler->load_from_file(esrgan_path)) {
return false;
}
return true;
}
sd_image_t upscale(sd_image_t input_image, uint32_t upscale_factor) {
// upscale_factor, unused for RealESRGAN_x4plus_anime_6B.pth
sd_image_t upscaled_image = {0, 0, 0, NULL};
int output_width = (int)input_image.width * esrgan_upscaler->scale;
int output_height = (int)input_image.height * esrgan_upscaler->scale;
LOG_INFO("upscaling from (%i x %i) to (%i x %i)",
input_image.width, input_image.height, output_width, output_height);
struct ggml_init_params params;
params.mem_size = output_width * output_height * 3 * sizeof(float) * 2;
params.mem_size += 2 * ggml_tensor_overhead();
params.mem_buffer = NULL;
params.no_alloc = false;
// draft context
struct ggml_context* upscale_ctx = ggml_init(params);
if (!upscale_ctx) {
LOG_ERROR("ggml_init() failed");
return upscaled_image;
}
LOG_DEBUG("upscale work buffer size: %.2f MB", params.mem_size / 1024.f / 1024.f);
ggml_tensor* input_image_tensor = ggml_new_tensor_4d(upscale_ctx, GGML_TYPE_F32, input_image.width, input_image.height, 3, 1);
sd_image_to_tensor(input_image.data, input_image_tensor);
ggml_tensor* upscaled = ggml_new_tensor_4d(upscale_ctx, GGML_TYPE_F32, output_width, output_height, 3, 1);
auto on_tiling = [&](ggml_tensor* in, ggml_tensor* out, bool init) {
esrgan_upscaler->compute(n_threads, in, &out);
};
int64_t t0 = ggml_time_ms();
sd_tiling(input_image_tensor, upscaled, esrgan_upscaler->scale, esrgan_upscaler->tile_size, 0.25f, on_tiling);
esrgan_upscaler->free_compute_buffer();
ggml_tensor_clamp(upscaled, 0.f, 1.f);
uint8_t* upscaled_data = sd_tensor_to_image(upscaled);
ggml_free(upscale_ctx);
int64_t t3 = ggml_time_ms();
LOG_INFO("input_image_tensor upscaled, taking %.2fs", (t3 - t0) / 1000.0f);
upscaled_image = {
(uint32_t)output_width,
(uint32_t)output_height,
3,
upscaled_data,
};
return upscaled_image;
}
};
struct upscaler_ctx_t {
UpscalerGGML* upscaler = NULL;
};
upscaler_ctx_t* new_upscaler_ctx(const char* esrgan_path_c_str,
int n_threads,
enum sd_type_t wtype) {
upscaler_ctx_t* upscaler_ctx = (upscaler_ctx_t*)malloc(sizeof(upscaler_ctx_t));
if (upscaler_ctx == NULL) {
return NULL;
}
std::string esrgan_path(esrgan_path_c_str);
upscaler_ctx->upscaler = new UpscalerGGML(n_threads);
if (upscaler_ctx->upscaler == NULL) {
return NULL;
}
if (!upscaler_ctx->upscaler->load_from_file(esrgan_path)) {
delete upscaler_ctx->upscaler;
upscaler_ctx->upscaler = NULL;
free(upscaler_ctx);
return NULL;
}
return upscaler_ctx;
}
sd_image_t upscale(upscaler_ctx_t* upscaler_ctx, sd_image_t input_image, uint32_t upscale_factor) {
return upscaler_ctx->upscaler->upscale(input_image, upscale_factor);
}
void free_upscaler_ctx(upscaler_ctx_t* upscaler_ctx) {
if (upscaler_ctx->upscaler != NULL) {
delete upscaler_ctx->upscaler;
upscaler_ctx->upscaler = NULL;
}
free(upscaler_ctx);
}