-
Notifications
You must be signed in to change notification settings - Fork 26
/
main_regression.py
227 lines (177 loc) · 7.51 KB
/
main_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import torch
import pandas as pd
import numpy as np
from sklearn.metrics import mean_squared_error, mean_absolute_error
from models.train_model import Train_Test
from models.lstm_fcn import LSTM_FCNs
from models.rnn import RNN_model
from models.cnn_1d import CNN_1D
from models.fc import FC
import warnings
warnings.filterwarnings('ignore')
class Regression():
def __init__(self, config):
"""
Initialize Regression class
:param config: config
:type config: dictionary
example (training)
>>> model_name = 'lstm'
>>> model_params = config.model_config[model_name]
>>> data_reg = mr.Regression(model_params)
>>> best_model = data_reg.train_model(train_x, train_y, valid_x, valid_y) # 모델 학습
>>> data_reg.save_model(best_model, best_model_path=model_params["best_model_path"]) # 모델 저장
example (testing)
>>> model_name = 'LSTM_rg'
>>> model_params = config.model_config[model_name]
>>> data_reg = mr.Regression(model_params)
>>> pred, mse, mae = data_reg.pred_data(test_x, test_y, y_scaler, best_model_path=model_params["best_model_path"]) # 예측
"""
self.model_name = config['model']
self.parameter = config['parameter']
# build trainer
self.trainer = Train_Test(config)
def build_model(self):
"""
Build model and return initialized model for selected model_name
:return: initialized model
:rtype: model
"""
# build initialized model
if self.model_name == 'LSTM_rg':
init_model = RNN_model(
rnn_type='lstm',
input_size=self.parameter['input_size'],
hidden_size=self.parameter['hidden_size'],
num_layers=self.parameter['num_layers'],
bidirectional=self.parameter['bidirectional'],
device=self.parameter['device']
)
elif self.model_name == 'GRU_rg':
init_model = RNN_model(
rnn_type='gru',
input_size=self.parameter['input_size'],
hidden_size=self.parameter['hidden_size'],
num_layers=self.parameter['num_layers'],
bidirectional=self.parameter['bidirectional'],
device=self.parameter['device']
)
elif self.model_name == 'CNN_1D_rg':
init_model = CNN_1D(
input_channels=self.parameter['input_size'],
input_seq=self.parameter['seq_len'],
output_channels=self.parameter['output_channels'],
kernel_size=self.parameter['kernel_size'],
stride=self.parameter['stride'],
padding=self.parameter['padding'],
drop_out=self.parameter['drop_out']
)
elif self.model_name == 'LSTM_FCNs_rg':
init_model = LSTM_FCNs(
input_size=self.parameter['input_size'],
num_layers=self.parameter['num_layers'],
lstm_drop_p=self.parameter['lstm_drop_out'],
fc_drop_p=self.parameter['fc_drop_out']
)
elif self.model_name == 'FC_rg':
init_model = FC(
representation_size=self.parameter['input_size'],
drop_out=self.parameter['drop_out'],
bias=self.parameter['bias']
)
else:
print('Choose the model correctly')
return init_model
def train_model(self, train_x, train_y, valid_x, valid_y):
"""
Train model and return best model
:param train_x: input train data
:type train_x: numpy array
:param train_y: target train data
:type train_y: numpy array
:param valid_x: input validation data
:type valid_x: numpy array
:param valid_y: target validation data
:type valid_y: numpy array
:return: best trained model
:rtype: model
"""
print(f"Start training model: {self.model_name}")
# build train/validation dataloaders
train_loader = self.get_dataloader(train_x, train_y, self.parameter['batch_size'], shuffle=True)
valid_loader = self.get_dataloader(valid_x, valid_y, self.parameter['batch_size'], shuffle=False)
# build initialized model
init_model = self.build_model()
# train model
dataloaders_dict = {'train': train_loader, 'val': valid_loader}
best_model = self.trainer.train(init_model, dataloaders_dict)
return best_model
def save_model(self, best_model, best_model_path):
"""
Save the best trained model
:param best_model: best trained model
:type best_model: model
:param best_model_path: path for saving model
:type best_model_path: str
"""
# save model
torch.save(best_model.state_dict(), best_model_path)
def pred_data(self, test_x, test_y, y_scaler, best_model_path):
"""
Predict target value based on the best trained model
:param test_x: input test data
:type test_x: numpy array
:param test_y: target test data
:type test_y: numpy array
:param y_scaler: scaler fitted on y variable in train dataset
:type: MinMaxScaler
:param best_model_path: path for loading the best trained model
:type best_model_path: str
:return: predicted values
:rtype: numpy array
:return: test mse
:rtype: float
:return: test mae
:rtype: float
"""
print(f"Start testing model: {self.model_name}")
# build test dataloader
test_loader = self.get_dataloader(test_x, test_y, self.parameter['batch_size'], shuffle=False)
# build initialized model
init_model = self.build_model()
# load best model
init_model.load_state_dict(torch.load(best_model_path))
# get predicted values
pred_data = self.trainer.test(init_model, test_loader) # shape: (num_of_instance, )
# inverse normalization to original scale
true_data = y_scaler.inverse_transform(np.expand_dims(test_y, axis=-1))
pred_data = y_scaler.inverse_transform(np.expand_dims(pred_data, axis=-1))
true_data = true_data.squeeze(-1) # shape=(num_of_instance, )
pred_data = pred_data.squeeze(-1) # shape=(num_of_instance, )
# calculate performance metrics
mse = mean_squared_error(true_data, pred_data)
mae = mean_absolute_error(true_data, pred_data)
# merge true value and predicted value
pred_df = pd.DataFrame()
pred_df['actual_value'] = true_data
pred_df['predicted_value'] = pred_data
return pred_df, mse, mae
def get_dataloader(self, x_data, y_data, batch_size, shuffle):
"""
Get DataLoader
:param x_data: input data
:type x_data: numpy array
:param y_data: target data
:type y_data: numpy array
:param batch_size: batch size
:type batch_size: int
:param shuffle: shuffle for making batch
:type shuffle: bool
:return: dataloader
:rtype: DataLoader
"""
# torch dataset 구축
dataset = torch.utils.data.TensorDataset(torch.Tensor(x_data), torch.Tensor(y_data))
# DataLoader 구축
data_loader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=shuffle)
return data_loader