-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathcomm_net.py
160 lines (125 loc) · 6.39 KB
/
comm_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import numpy as np
import tensorflow as tf
from guessing_sum_env import *
# TODO use the parameters of train_ddpg
HIDDEN_VECTOR_LEN = 1
NUM_AGENTS = 2
VECTOR_OBS_LEN = 1
OUTPUT_LEN = 1
class CommNet:
@staticmethod
def base_build_network(observation):
# H0 = CommNet.encoder(observation)
H0 = observation
C0 = tf.zeros(tf.shape(H0), name="C0")
H1, C1 = CommNet.comm_step("comm_step1", H0, C0)
H2, _ = CommNet.comm_step("comm_step2", H1, C1, H0)
# H3, _ = CommNet.comm_step("comm_step3", H2, C2, H0)
return H2
@staticmethod
def actor_build_network(name, observation):
with tf.variable_scope(name):
H = CommNet.base_build_network(observation)
return CommNet.actor_output_layer(H)
@staticmethod
def critic_build_network(name, observation, action):
with tf.variable_scope(name):
H = CommNet.base_build_network(observation)
return CommNet.critic_output_layer(H, action)
@staticmethod
def encoder(s):
H = []
with tf.variable_scope("encoder", reuse=tf.AUTO_REUSE):
for j in range(NUM_AGENTS):
encoded = tf.layers.dense(tf.reshape(s[j], (1, VECTOR_OBS_LEN)), HIDDEN_VECTOR_LEN, name="dense")
H.append(tf.squeeze(encoded))
H = tf.stack(H)
H = tf.reshape(H, (NUM_AGENTS, HIDDEN_VECTOR_LEN))
return H
@staticmethod
def module(h, c):
with tf.variable_scope("module", reuse=tf.AUTO_REUSE):
w_H = tf.get_variable(name='w_H', shape=HIDDEN_VECTOR_LEN,
initializer=tf.contrib.layers.xavier_initializer())
w_C = tf.get_variable(name='w_C', shape=HIDDEN_VECTOR_LEN,
initializer=tf.contrib.layers.xavier_initializer())
tf.summary.histogram('w_H', w_H)
tf.summary.histogram('w_C', w_C)
return tf.tanh(tf.multiply(w_H, h) + tf.multiply(w_C, c))
@staticmethod
def comm_step(name, H, C, H0_skip_con=None):
batch_size = tf.shape(H)[0]
with tf.variable_scope(name):
next_H = tf.zeros(shape=(batch_size, 0, HIDDEN_VECTOR_LEN))
for j in range(NUM_AGENTS):
h = H[:, j]
c = C[:, j]
next_h = CommNet.module(h, c) # shape (BATCH_SIZE, HIDDEN_VECTOR_LEN)
next_H = tf.concat([next_H, tf.reshape(next_h, (batch_size, 1, HIDDEN_VECTOR_LEN))], 1)
next_H = tf.identity(next_H, "H")
if H0_skip_con is not None:
next_H = tf.add(next_H, H0_skip_con)
if NUM_AGENTS > 1:
next_C = tf.zeros(shape=(batch_size, 0, HIDDEN_VECTOR_LEN))
for j1 in range(NUM_AGENTS):
next_c = []
for j2 in range(NUM_AGENTS):
if j1 != j2:
next_c.append(next_H[:, j2])
next_c = tf.reduce_mean(tf.stack(next_c), 0)
next_C = tf.concat([next_C, tf.reshape(next_c, (batch_size, 1, HIDDEN_VECTOR_LEN))], 1)
else:
next_C = C
return next_H, tf.identity(next_C, "C")
@staticmethod
def actor_output_layer(H):
with tf.variable_scope("actor_output"):
w_out = tf.get_variable(name='w_out', shape=(HIDDEN_VECTOR_LEN, OUTPUT_LEN),
initializer=tf.contrib.layers.xavier_initializer())
b_out = tf.get_variable(name='b_out', shape=OUTPUT_LEN, initializer=tf.zeros_initializer())
tf.summary.histogram('w_out', w_out)
tf.summary.histogram('b_out', b_out)
batch_size = tf.shape(H)[0]
actions = []
for j in range(NUM_AGENTS):
h = tf.slice(H, [0, j, 0], [batch_size, 1, HIDDEN_VECTOR_LEN])
w_out_batch = tf.tile(tf.expand_dims(w_out, axis=0), [batch_size, 1, 1])
action = tf.squeeze(tf.matmul(h, w_out_batch) + b_out, [1])
actions.append(action)
actions = tf.stack(actions, name="actions", axis=1)
return actions
@staticmethod
def critic_output_layer(H, action):
with tf.variable_scope("critic_output", reuse=tf.AUTO_REUSE):
baseline = tf.layers.dense(inputs=tf.concat([H, action], 2),
units=1,
activation=tf.tanh,
kernel_initializer=tf.contrib.layers.xavier_initializer())
baseline = tf.squeeze(baseline, [2])
baseline = tf.layers.dense(inputs=baseline,
units=1,
kernel_initializer=tf.contrib.layers.xavier_initializer())
tf.summary.histogram("w_baseline", tf.get_variable("dense/kernel"))
return baseline
if __name__ == '__main__':
tf.set_random_seed(42)
tf.reset_default_graph()
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
BATCH_SIZE = 10
observation = tf.placeholder(tf.float32, shape=(None, NUM_AGENTS, VECTOR_OBS_LEN))
actions = tf.placeholder(tf.float32, shape=(None, NUM_AGENTS, OUTPUT_LEN))
actor_out = CommNet.actor_build_network("actor_network", observation)
critic_out = CommNet.critic_build_network("critic_network", observation, actions)
sess.run(tf.global_variables_initializer())
feed_dict = {observation: np.random.random_sample((BATCH_SIZE, NUM_AGENTS, VECTOR_OBS_LEN))}
print(sess.run(actor_out, feed_dict=feed_dict).shape, "==", (BATCH_SIZE, NUM_AGENTS, OUTPUT_LEN))
feed_dict = {observation: np.random.random_sample((BATCH_SIZE, NUM_AGENTS, VECTOR_OBS_LEN)),
actions: np.random.random_sample((BATCH_SIZE, NUM_AGENTS, OUTPUT_LEN))}
print(sess.run(critic_out, feed_dict=feed_dict).shape, "==", (BATCH_SIZE, 1))
feed_dict = {observation: np.random.random_sample((1, NUM_AGENTS, VECTOR_OBS_LEN))}
print(sess.run(actor_out, feed_dict=feed_dict).shape, "==", (1, NUM_AGENTS, OUTPUT_LEN))
feed_dict = {observation: np.random.random_sample((1, NUM_AGENTS, VECTOR_OBS_LEN)),
actions: np.random.random_sample((1, NUM_AGENTS, OUTPUT_LEN))}
print(sess.run(critic_out, feed_dict=feed_dict).shape, "==", (1, 1))