-
Notifications
You must be signed in to change notification settings - Fork 0
/
Quantale.hs.bak
148 lines (126 loc) · 6.28 KB
/
Quantale.hs.bak
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
{-# LANGUAGE GADTs #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE DataKinds, TypeSynonymInstances, TypeFamilies, TypeOperators #-}
{-# LANGUAGE UndecidableInstances, FlexibleInstances #-}
module Quantale where
import qualified Data.Set as Set
import qualified Math.Combinatorics.Poset as PS
import Data.Maybe
class UnitalQuantale a where
unit :: a
po :: a -> a -> Bool
monoidal :: a -> a -> a
myJoin :: [a] -> a
-- change int to other numeric types if desired, Nothing stands for +\infty
type Cost = Maybe Int
-- the default instance of Ord that comes from Maybe n with (Ord n) puts Nothing <= everything
-- we want it to be >= everything
greatestLowerBound :: (Ord a) => Maybe a -> Maybe a -> Maybe a
greatestLowerBound Nothing x = x
greatestLowerBound x Nothing = x
greatestLowerBound (Just x) (Just y)
| x<=y = Just x
| otherwise = Just y
instance (Num a, Ord a) => UnitalQuantale (Maybe a) where
po Nothing Nothing = True
po Nothing (Just x) = True
po (Just x) Nothing = False
po (Just x) (Just y) = (x >= y)
monoidal _ Nothing = Nothing
monoidal Nothing _ = Nothing
monoidal (Just x) (Just y) = Just (x+y)
unit = Just 0
myJoin [] = Nothing
myJoin (x:xs) = greatestLowerBound x (myJoin xs)
reachability :: Num a => Maybe a -> Bool
reachability (Just x) = True
reachability Nothing = False
-- power set of strings
data Letters = Alpha | Beta | Gamma deriving (Eq,Read,Show,Ord)
type PowerSetStrings = Set.Set [Letters]
instance UnitalQuantale PowerSetStrings where
po a b = b `Set.isSubsetOf` a
monoidal a b = Set.fromList [fromA++fromB | fromA <- Set.toList a, fromB <- Set.toList b]
unit = Set.fromList []
myJoin = Set.unions
multiplyQMatrices :: (UnitalQuantale q) => [b] -> (a -> b -> q) -> (b -> c -> q) -> a -> c -> q
multiplyQMatrices allY matrixM matrixN x z = myJoin [monoidal (matrixM x y) (matrixN y z) | y <- allY]
powerQMatrices :: (Eq a,UnitalQuantale q) => [a] -> (a -> a -> q) -> Int -> a -> a -> q
powerQMatrices allX matrixM n x y
| n <= 0 = myJoin []
| n == 0 && (x==y) = unit
| n == 0 && (x/=y) = myJoin []
| n == 1 = matrixM x y
| n > 1 = multiplyQMatrices allX matrixM (powerQMatrices allX matrixM (n-1)) x y
-- In 7 sketches this is on page 62
data MyVertices = VertexX | VertexY | VertexZ deriving (Eq,Read,Show)
allVertices = [VertexX , VertexY , VertexZ]
weightGraph :: MyVertices -> MyVertices -> Cost
weightGraph VertexX VertexX = unit
weightGraph VertexX VertexY = Just 4
weightGraph VertexX VertexZ = Just 3
weightGraph VertexY VertexY = unit
weightGraph VertexY VertexX = Just 3
weightGraph VertexZ VertexZ = unit
weightGraph VertexZ VertexY = Just 4
weightGraph _ _ = Nothing
-- the Z, X entry of M_Y^2 in notation of 7Sketches
example = multiplyQMatrices allVertices weightGraph weightGraph VertexZ VertexX
-- all of the entries M_Y^3 read into a single list instead of a matrix
example2 = [powerQMatrices allVertices weightGraph 3 x y|x<-allVertices, y<-allVertices]
-- category enriched in a quantale especially cost enriched, feasibility relations with costs
-- Eq t, UnitalQuantale q is not enforced when creating a QuantaleEnriched, unless you do it through the below two functions
newtype QuantaleEnriched t q = QuantaleEnriched {myData :: ([t],t->t->q)}
toQuantaleEnriched :: (Eq t, UnitalQuantale q) => [t] -> (t -> t -> q) -> QuantaleEnriched t q
toQuantaleEnriched underlyingSet morphisms = QuantaleEnriched {myData = (underlyingSet,morphisms)}
toQuantaleEnriched2 :: (Eq t, UnitalQuantale q) => [t] -> (t -> t -> q) -> Int -> QuantaleEnriched t q
toQuantaleEnriched2 allVertices oneStepMorphisms maxSteps = toQuantaleEnriched allVertices (powerQMatrices allVertices oneStepMorphisms maxSteps)
-- same as example2 but wrapped into the newtype
example3 = toQuantaleEnriched2 allVertices weightGraph 5
toPoset :: QuantaleEnriched t q -> (q -> Bool) -> PS.Poset t
toPoset enriched reduction = PS.Poset (set,\x y -> reduction $ poOne x y) where (set,poOne)=(myData enriched)
example4 = toPoset example3 reachability
quantaleCollage :: (Eq a,Eq t, UnitalQuantale q) => Int -> QuantaleEnriched t q -> QuantaleEnriched a q -> (t -> a -> q) -> QuantaleEnriched (Either t a) q
quantaleCollage upperBound enriched1 enriched2 connection = toQuantaleEnriched2 fullSet oneStepMorphisms upperBound
where setA = fst $ myData enriched1
setB = fst $ myData enriched2
morphismsA = snd $ myData enriched1
morphismsB = snd $ myData enriched2
fullSet = map Left setA ++ map Right setB
oneStepMorphisms (Left a1) (Left a2) = morphismsA a1 a2
oneStepMorphisms (Right b1) (Right b2) = morphismsB b1 b2
oneStepMorphisms (Left a1) (Right b2) = connection a1 b2
oneStepMorphisms _ _ = myJoin []
-- example from Lecture 59
-- multiplied by 10 everywhere to keep integers, as an overestimation allowed 5 step paths at most
-- the shortest paths should be within that coarse upper bound, but didn't check
-- Example is untested but compiles
data Example59C = North | South | East | West deriving (Show,Read,Eq)
example59XSet :: [Example59C]
example59XSet = [North,South,East,West]
example59XMor :: Example59C -> Example59C -> Cost
example59XMor South West = Just 30
example59XMor South East = Just 20
example59XMor West North = Just 10
example59XMor East North = Just 50
example59XMor East South = Just 4
example59XMor _ _ = Nothing
example59CQE :: QuantaleEnriched Example59C Cost
example59CQE = toQuantaleEnriched2 example59XSet example59XMor 5
data Example59D = A | B | C | D | E deriving (Show,Read,Eq)
example59YSet :: [Example59D]
example59YSet = [A,B,C,D,E]
example59YMor :: Example59D -> Example59D -> Cost
example59YMor A B = Just 70
example59YMor A C = Just 0
example59YMor B D = Just 20
example59YMor _ _ = Nothing
example59DQE :: QuantaleEnriched Example59D Cost
example59DQE = toQuantaleEnriched2 example59YSet example59YMor 5
connector :: Example59C -> Example59D -> Cost
connector South A = Just 90
connector East B = Just 120
connector North C = Just 47
connector North E = Just 80
costEnrichedCollage :: QuantaleEnriched (Either Example59C Example59D) Cost
costEnrichedCollage = quantaleCollage 5 example59CQE example59DQE connector